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PREFACE

This book is about the mathematics behind the modern science of send-
ing secret messages, or cryptography. Modern cryptography is a science,
and like all modern science, it relies on mathematics. Without the math-
ematics, you can only go so far in understanding cryptography. I want
you to be able to go farther, not only because I think you should know
about cryptography, but also because I think the particular kinds of
mathematics the cryptographers use are really pretty, and I want to
introduce you to them.

In A Brief History of Time, Stephen Hawking says that someone told
him that each equation he included in the book would halve the sales.
I hope that’s not true of this book, because there are lots of equations.
But I don’t think the math is necessarily that hard. I once taught a class
on cryptography in which I said that the prerequisite was high school
algebra. Probably I should have said that the prerequisite was high
school algebra and a willingness to think really hard about it. There’s
no trigonometry here, no calculus, no differential equations. There are
some ideas that don’t usually come up in an algebra course, and I’ll try
to walk you through them. If you want to really understand these ideas,
you can do it without any previous college-level math—but you might
have to think hard. (The math in some of the sidebars is a little harder,
but you can skip those and still understand the rest of the book just fine.)

Mathematics isn’t all there is to cryptography. Unlike most sciences,
cryptography is about intelligent adversaries who are actively fight-
ing over whether secrets will be revealed. Ian Cassels, who was both
a prominent mathematician at Cambridge and a former British crypt-
analyst from World War II, had a good perspective on this. He said that
“cryptography is a mixture of mathematics and muddle, and without the
muddle the mathematics can be used against you.” In this book I’ve re-
moved some of the muddle in order to focus on the mathematics. Some
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professional cryptographers may take issue with that, because I am not
really showing you the most secure systems that I could. In response,
I can say only that this book for those interested in learning about a
particular part of cryptography, namely, the mathematical foundations.
There are many additional books in Suggestions for Further Reading

and the Bibliography that you should read if you want to become a
well-rounded professional.

Here is where I have drawn my personal line: I have tried not to say
anything false in this book in the name of simplification, but I have left
things out. I have left out some details of how to use the systems most
securely, and I have left out some systems that I don’t feel contribute
to the mathematical story I want to tell. When possible, I have tried
to present systems that have actually been used to protect real secrets.
However, I have included some that were made up by me or another
academic type when I feel that they best illustrate a point.

Computer technology has changed both the types of data with
which cryptographers work and the techniques that are feasible. Some
of the systems for protecting data that I discuss are either no longer ap-
plicable or no longer secure in today’s world, even if they were in the
past. Likewise, some of the techniques I discuss for breaking these sys-
tems are no longer effective in the forms presented here. Despite this, I
feel that all the topics in this book illustrate issues that are still impor-
tant and relevant to modern cryptography. I have tried to indicate how
the principles are still used today, even when the actual systems are not.
“Looking Forward” at the end of each chapter gives you a preview of
how the chapter you just finished relates to the chapters yet to come or
to future developments that I think are possible or likely.

A lot of the chapters follow the historical development of their topic,
because that development is often a logical progression through the
ideas I’m describing. History is also a good way to tell a story, so I
like to use it when it fits. There’s lots more about the history of cryptog-
raphy out there, so if you would like to know more, definitely check out
Suggestions for Further Reading.

I tell my students that I became a math professor because I like
math and I like to talk. This book is me talking to you about a particular
application of mathematics that I really like. My hope is that by the end
of the book, you will really like it too.



ACKNOWLEDGMENTS

I wish I could individually thank everyone with whom I have ever had
a good conversation about math or cryptography, but obviously I can’t.
I do want to single out some of the people who have particularly helped
with my teaching of cryptography: by letting me sit in on their classes,
by encouraging me, by teaching with me, or by sharing relevant mate-
rials. In roughly chronological order, these include David Hayes, Susan
Landau (from whom I learned the “cosmic ray” principle, among many
other cryptographic things), Richard Hain, Stephen Greenfield, Gary
Sherman (from whom I learned the “shoes and socks” principle), and
David Mutchler. I apologize if I’ve left anyone out.

Thank you to all the attendees of the Algorithmic Number Theory
Symposia, particularly Carl Pomerance, Jon Sorenson, Hugh Williams,
and all the members of Hugh’s “posse” at (or formerly at) the Univer-
sity of Calgary. I’d also like to thank Brian Winkel, Craig Bauer, and
the present and past members of the Editorial Board of Cryptologia.
Without the friendship and encouragement of all of you, I’m sure my
cryptography research would never have gotten off of the ground. And
thanks go to all my research students at Rose-Hulman and at the Rose-
Hulman Summer Research Experience for Undergraduates, who gave
me the best reason to keep my research going.

This book has been in progress for a long time and many people
have reviewed various drafts of it over the years. Many of you I don’t
know personally, and I don’t even know some of your names, but thank
you to all of you. Two people I particularly would like to thank are Jean
Donaldson and Jon Sorenson. Jean volunteered to read a very early draft
despite my being unable to offer any personal or professional incentive
whatsoever. Not being a professional mathematician or cryptographer,
she was the perfect audience and everything she said was immensely
useful. Jon Sorenson likewise read an early draft and made encouraging



xiv • Acknowledgments

and helpful comments. In addition to being a reviewer, Jon has been
a colleague and a friend for many years and has helped my career in
numerous ways. Paul Nahin, David Kahn, and John MacCormick are
also among those who gave me encouraging and helpful reviews.

The staff at Rose-Hulman’s Logan Library have been invaluable
through this process. Amy Harshbarger has come up with articles and
technical reports through Interlibrary Loan that I thought would never
be found. And Jan Jerrell let me keep library books far beyond the lim-
its of a reasonable circulation policy. I thank them both, and everyone
else at the library, profusely. Speaking of the library, Heather Chenette
and Michelle Marincel Payne helped organize the “Shut Up and Write”
group that met there and got me through the final revisions.

I could not have done this without the support and tolerance of my
wife, Lana, our housemate, Richard, and the cats, who “tolerated” the
occasional late dinner. You’ve put up with a lot through this process. I
really appreciate it.

Finally, thank you to everyone at Princeton University Press, espe-
cially my editor, Vickie Kearn. Vickie first approached me about writing
a cryptography book 12 years ago, and in all that time she never lost
faith that it would happen some day. I can’t believe it’s finally finished.
Thanks so much.



THE MATHEMATICS OF SECRETS





1
Introduction to Ciphers and Substitution

1.1 alice and bob and carl and julius:
terminology and caesar cipher

People have been trying to hide the content of written messages almost
as long as writing itself has existed and have developed a multitude
of different methods of doing it. And almost as soon as people started
trying to hide their messages, scholars started trying to classify and de-
scribe these methods. Unfortunately, this means that I’ve got to hit you
straight up with a bunch of terminology. Even worse, a lot of words that
are used interchangeably in ordinary conversation have specific mean-
ings to experts in the field. It’s not really hard to get the hang of what’s
what, though.

As our first example, people who study secret messages often use
the terms code and cipher to mean two different things. David Kahn,
author of perhaps the definitive account of the history of cryptog-
raphy, said it about as well as anyone could: “A code consists of
thousands of words, phrases, letters, and syllables with the codewords or
codenumbers . . . that replace these plaintext elements . . . . In ciphers, on
the other hand, the basic unit is the letter, sometimes the letter-pair . . . ,
very rarely larger groups of letters . . . .” A third method of sending se-
cret messages, steganography, consists of concealing the very existence
of the message, for example, through the use of invisible ink. In this book
we will concentrate on ciphers as they are generally the most interesting
mathematically, although examples of the other methods may come up
from time to time.

A few more terms will be helpful before we get started. The study
of how to send secret messages by codes and ciphers is called cryptog-
raphy, whereas the study of how to read such secret messages without
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permission is called cryptanalysis, or codebreaking. Together, the two
fields make up the field of cryptology. (Sometimes cryptography is also
used for the two fields combined, but we will try to keep the terms
separate.)

It’s become customary when talking about cryptology to talk about
Alice, who wants to send a message to Bob. We’re going to start with
Julius, though. That’s Julius Caesar, who in addition to being dicta-

tor perpetuus of Rome was also a military genius, a writer, and . . . a
cryptographer.

Caesar probably wasn’t the original inventor of what we now
call the Caesar cipher, but he certainly made it popular. The Roman
historian Suetonius describes the cipher:

There are also letters of his [Caesar’s] to Cicero, as well as to his intimates

on private affairs, and in the latter, if he had anything confidential to say,

he wrote it in cipher, that is, by so changing the order of the letters of

the alphabet, that not a word could be made out. If anyone wishes to

decipher these, and get at their meaning, he must substitute the fourth

letter of the alphabet, namely D, for A, and so with the others.

In other words, whenever Alice wants to send a message, she first
writes out the plaintext, or the text of the message in ordinary language.
She is going to encipher this message, or put it into secret form using
a cipher, and the result will be the ciphertext of the message. To put
it into code would be to encode it, and the term encrypt can be used
for either. For every a in the plaintext, Alice substitutes D in the cipher-
text, for every b, she substitutes E, and so on. Each letter is shifted 3
letters down the alphabet. That’s perfectly straightforward. The inter-
esting part happens when Alice gets to the end of the alphabet and runs
out of letters. The letter w becomes Z, so where does the letter x go?
It wraps around, to A! The letter y becomes B and z becomes C. For
example, the message “and you too, Brutus” becomes

plaintext: a n d y o u t o o b r u t u s

ciphertext: D Q G B R X W R R E U X W X V

This would be the message Alice sends to Bob.
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You have actually used this “wraparound” idea in daily life since
you were a child. What’s 3 hours after 1:00? It’s 4:00. Three hours after
2:00 is 5:00. What’s 3 hours after 10:00? It’s 1:00. You wrapped around.

It was around 1800 CE when Carl Friedrich Gauss codified this
wraparound idea formally. It’s now called modular arithmetic, and
the wraparound number is called themodulus. A mathematician would
write our wraparound clock example like this:

10+ 3 ≡ 1 (mod 12)

and read it as “ten plus three is one modulo twelve.”
But what about Caesar cipher? We can represent it using modular

arithmetic if we are willing to change our letters into numbers. Instead
of a think of the number 1, instead of b think of the number 2, and so
on. This changing of letters to numbers is not really considered part of
the secret cipher. It’s a pretty obvious idea to those of us in the digi-
tal age, and Alice shouldn’t really expect to keep it a secret. Only the
operations that we do on the numbers are considered secret.

Now our modulus is 26 and our Caesar cipher looks like this.

plaintext number plus 3 ciphertext

a 1 4 D

b 2 5 E
...

...
...

...

x 24 1 A

y 25 2 B

z 26 3 C

Remember that the “plus 3” wraps around at 26.
To decipher the message, or take it from ciphertext to plaintext, Bob

shifts three letters in the opposite direction, left. This time, he has to
wrap around when he goes past a, or in terms of numbers, when he
goes past 1. 0 wraps to 26, −1 wraps to 25, and so on. In the form we
used earlier, that looks like the following.
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ciphertext number minus 3 plaintext

A 1 24 x

B 2 25 y

C 3 26 z
...

...
...

...

Y 25 22 v

Z 26 23 w

1.2 the key to the matter: generalizing the caesar cipher

From Caesar’s point of view, he had a pretty secure cipher. After all,
most of the people who might intercept one of his messages couldn’t
even read, much less analyze a cipher. However, from a modern cryp-
tologic point of view it has a major drawback—once you have figured
out that someone is using Caesar cipher, you know everything about the
system. There’s no key, or extra piece of information, that lets you vary
the cipher. This is considered to be a very bad thing.

Stop to think about that a moment. What’s the big deal? Your cipher
is either secret or it isn’t, right? That was the view in Caesar’s time and
for many centuries afterward. But in 1883, Auguste Kerckhoffs pub-
lished a revolutionary essay, in which he stated, “The system must not
require secrecy and can be stolen by the enemywithout causing trouble.”
Amazing! How can having your system stolen not cause trouble?

Kerckhoffs went on to point out that it is just too easy for Eve
the Eavesdropper to find out what system Alice and Bob are using. In
Kerckhoffs’ time, like Caesar’s, cryptography was used mostly by mili-
taries and governments, so Kerckhoffs was thinking about the informa-
tion that an enemy might get through bribing or capturing a member
of Alice or Bob’s staff. These are still valid concerns in many situations
today, and we can add to them the possibilities of Eve tapping phone
lines, installing spyware on computers, and plain lucky guessing.

On the other hand, if Alice and Bob have a system that requires
a key to encipher and decipher, then things aren’t so bad. If Eve finds
out what general system is being used, she still can’t easily read any
messages. Attempting to read a message without the key and/or deter-
mining the key used for a message is called cryptanalyzing the message
or cipher or, more colloquially, breaking it. And even if she manages to
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find out Alice and Bob’s key, all is not lost. If Alice and Bob are smart,
they are changing the key regularly. Since the basic system is the same,
this isn’t too hard, and then even if Eve gets the key to some of the
messages, she won’t be able to read all of them.

So we need to find a way to make small changes to Caesar cipher,
depending on the value of some key. A logical place to start would be
to ask why Alice is shifting her plaintext 3 places and not some other
number? There is no particular reason; perhaps Caesar was just fond
of the number 3. His successor, Augustus, used a similar system but
shifted each letter only 1 place to the right. The “rot13” (“rot” stands for
rotate) cipher shifts each letter forward by 13 places, wrapping around
when you get to the end. This cipher is often used on the Internet to
hide the punchlines of jokes or things that some people might find of-
fensive. The general idea of shifting by k letters (or adding k modulo
26) is called a shift cipher, or additive cipher, with a key of k. For ex-
ample, consider a shift cipher with a key of 21. Then Caesar’s message
would be:

plaintext: a n d y o u t o o b r u t u s
numbers: 1 14 4 25 15 21 20 15 15 2 18 21 20 21 19
plus 21: 22 9 25 20 10 16 15 10 10 23 13 16 15 16 14

ciphertext: V I Y T J P O J J W M P O P N

How many different keys are there? Shifting by 0 letters is probably
not a good idea, but you could do it. Shifting by 26 letters is the same
as shifting by 0 letters—or, in other words, 26 is the same as 0 modulo
26. Shifting by 27 letters is the same as shifting by 1 letter, and so on.
So there are 26 ways of shifting that actually give you different results,
or 26 keys. Note that this includes 0, the “stupid key,” which doesn’t do
anything to the message. The technical term for when a cipher doesn’t
do anything is the trivial cipher. Suppose Alice sends Bob a message
using a shift cipher and Eve intercepts it. Even if Eve has somehow
learned that Alice and Bob are using a shift cipher, she still has to try
26 different keys in order to decipher the message. That’s not a large
number, but it’s better than Caesar cipher.

Can we add some more keys? What about shifting our letters left
instead of right? Unfortunately, that doesn’t help. Suppose we shift our
plaintext 1 letter to the left and wrap around the other direction.
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plaintext: a n d y o u t o o b r u t u s

numbers: 1 14 4 25 15 21 20 15 15 2 18 21 20 21 19

minus 1: 0 13 3 24 14 20 19 14 14 1 17 20 19 20 18

ciphertext: Z M C X N T S N N A Q T S T R

Note that since 0 is the same as 26 modulo 26, we can assign them both
to the ciphertext letter “Z” interchangeably. If you think about it, you’ll
see that shifting 1 letter to the left is the same as shifting 25 letters to the
right. Or in terms of modular arithmetic, you can think of left shifts as
negative, so we are saying −1 is the same as 25 modulo 26. So left shifts
don’t help.

1.3 multiplicative ciphers

Let’s look at a different type of cipher for some inspiration. This is called
the decimation method of constructing a cipher. We need to pick a key,
say 3. We start by writing out our plaintext alphabet.

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z

Then we count off every third letter, crossing each out (or “decimating”
it) and writing each such letter as our ciphertext alphabet.

plaintext:    a    b    c   d    e     f     g     h      i    j      k     l     m    n     o     p    q      r     s      t    u    v   w   x    y   z

ciphertext:    C       IF L O R U X

When you get to the end, “wrap around” to the beginning. In this case,
cross out the “a” and keep going.

plaintext:    a    b    c    d    e     f     g     h     i     j     k     l    m    n    o    p     q    r    s   t    u    v   w    x    y   z

ciphertext:    C   F    I    L    O    R    U    X     A   D    G     J    M    P    S    V     Y

Finally, wrap around to the “b” and finish up:
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plaintext:    a    b    c    d    e     f     g     h     i     j     k    l     m    n    o    p    q     r     s     t     u    v    w     x    y     z

ciphertext:   C    F    I    L   O    R   U    X    A   D    G    J    M    P   S    V    Y    B    E    H   K   N    Q    T    W   Z

So our final translation of plaintext to ciphertext is

plaintext: a b c d e f g h i j k l m

ciphertext: C F I L O R U X A D G J M

plaintext: n o p q r s t u v w x y z

ciphertext: P S V Y B E H K N Q T W Z

Okay, now let’s try to look at this like a mathematician. How can we
describe the decimation method in terms of modular arithmetic? Well,
we should translate our numbers into letters, of course.

plaintext: a b c d e f g h i j · · · y z

numbers: 1 2 3 4 5 6 7 8 9 10 · · · 25 26

some operation?: 3 6 9 12 15 18 21 24 1 4 · · · 23 26

ciphertext: C F I L O R U X A D · · · W Z

Very interesting! For the first eight letters, all we have to do is multi-
ply the number corresponding to the plaintext by 3 (the key) and we get
the ciphertext. For the letter i this doesn’t quite work, because 9 times 3
is 27—but 27 is the same as 1 modulo 26, which corresponds correctly to
our ciphertext letter A.

Apparently there was nothing much special about the addition part
of our additive cipher. Instead of adding 3 to each plaintext number,
we can multiply by 3 instead, wrapping around when we get to 26. This
makes sense from the “clock arithmetic” point of view also: Start at mid-
night. Three times 3 hours later is 9:00. Three times 4 hours later is 12:00.
Three times 5 hours later is 3:00, and so on. Our new multiplicative
cipher with key 3 looks like this:
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plaintext number times 3 ciphertext

a 1 3 C

b 2 6 F
...

...
...

...

y 25 23 W

z 26 26 Z

If we want to encipher the message “be fruitful and multiply,” it
would look like this:

plaintext: b e f r u i t f u l a n d

numbers: 2 5 6 18 21 9 20 6 21 12 1 14 4

times 3: 6 15 18 2 11 1 8 18 11 10 3 16 12

ciphertext: F O R B K A H R K J C P L

plaintext: m u l t i p l y

numbers: 13 21 12 20 9 16 12 25

times 3: 13 11 10 8 1 22 10 23

ciphertext: M K J H A V J W

Incidentally, it’s often useful to have a faster way of dealing with
the wraparound than subtracting 26 over and over again. Luckily, you
already know one—it’s division with remainder, just like you learned
in grade school. Only now, once we have seen how many 26s go into
the number, we are going to throw all the 26s away and just keep the
remainder. For example, to encipher the last letter of the preceding
example, I multiplied 25 by 3 to get 75. Then I divided 75 by 26:

2
26
)

75
−52
23

The quotient is 2, which I can throw away, and the remainder is 23,
which is the number I need for my ciphertext. Another way of thinking
about it is that the division with remainder shows that 75 = 2×26+23;
that is, 75 is twice 26 with 23 left over. But 26 is the same as 0 modulo
26, so 75 is the same as 2× 0+ 23 = 23 modulo 26.
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How many keys does the multiplicative cipher have? At first glance,
you might expect 26 again, including one stupid key. But hold on a
moment—multiplying by 26 modulo 26 is the same as multiplying by 0.
And multiplying by 0 is bad. Not just stupid, but bad. A multiplicative
cipher with a key of 0 looks like this:

plaintext number times 0 ciphertext

a 1 0 Z

b 2 0 Z
...

...
...

...

y 25 0 Z

z 26 0 Z

So if we encrypt a message with this cipher, it comes out as

plaintext: a r e a l l y b a d k e y

numbers: 1 18 5 1 12 12 25 2 1 4 11 5 25

times 0: 0 0 0 0 0 0 0 0 0 0 0 0 0

ciphertext: Z Z Z Z Z Z Z Z Z Z Z Z Z

There’s no way on earth to decrypt that! So we can’t use that key.
Are there any other keys we can’t use? Think about multiplying by

2—we know that any number multiplied by 2 is even. A multiplicative
cipher with a key of 2 looks like this:

plaintext number times 2 ciphertext

a 1 2 B

b 2 4 D
...

...
...

...

l 12 24 X

m 13 26 Z

n 14 2 B

o 15 4 D
...

...
...

...

y 25 24 X

z 26 26 Z
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That’s better than multiplying by 0, but it still presents a problem
when deciphering: a ciphertext B could be plaintext a or plaintext n;
similarly, there are two plaintext letters for every other ciphertext letter.
The same thing will happen with every other even key, so that makes
13 bad keys so far, and 13 left. There’s one more bad key—take a mo-
ment to try and find it. So there are actually only 12 good keys for a
multiplicative cipher, including multiplication by 1, the stupid key.

We’ve talked about enciphering a message with a multiplicative
cipher but not really about deciphering it. Remember that to decipher
a message, you need to do the opposite from enciphering it. To decrypt
a Caesar cipher, you shift 3 letters left instead of shifting right. To de-
crypt a shift cipher, you shift k letters left. What about a multiplicative
cipher? Well, you could just write out the whole table and use it back-
ward, and in practice you probably would most of the time. But for very
short messages, you might not want to write out the whole table. How
can you reverse a multiplication?

The everyday answer is to divide. The opposite of multiplying by
3 is dividing by 3. That works fine for some of the letters in our multi-
plicative cipher with key 3. Ciphertext C becomes 3, which divided by 3
becomes 1, which is plaintext a. Ciphertext F becomes 6, which divided
by 3 is 2, which is b. But what about A? It becomes 1, which divided
by 3 is 1

3 , which isn’t a letter. The solution is in the wraparound. The
number 1 is the same as 27 modulo 26, so we could also say A becomes
27, which divided by 3 is 9, which is i. Likewise B could be not just 2 but
also 28 and 54, and 54 divided by 3 is 18, so B corresponds to r.

ciphertext number divided by 3 plaintext

B 2 2
3 (not a letter)

B 28 9 13 (not a letter)

B 54 18 r

This sort of trial and error works but is not much more efficient than
writing out the table. For example, suppose your key is 15 instead of 3
for a moment. What plaintext letter does ciphertext B correspond to?
Modulo 26, B could be any of the numbers 2, 28, 54, 80, 106, 132, 158,
184, 210, . . . .
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ciphertext number divided by 15 plaintext

B 2 2
15 (not a letter)

B 28 1 1315 (not a letter)

B 54 3 9
15 (not a letter)

B 80 5 5
15 (not a letter)

B 106 7 1
15 (not a letter)

B 132 8 1215 (not a letter)

B 158 10 8
15 (not a letter)

B 184 12 4
15 (not a letter)

B 210 14 n

It takes 9 tries before you find a value that’s divisible by 15, and
there’s nothing to assure you that it won’t be even worse for other let-
ters. What would be really useful is a whole number that works modulo
26 like 1

3 does for ordinary numbers. We could call this number 3. Then
multiplying by 3 modulo 26 would be the same as multiplying by 1

3
modulo 26, which is the same as dividing by 3 modulo 26.

Why might we think that 3 exists? If we look back at our example
multiplicative cipher with key 3 from earlier, its deciphering table would
look like this:

ciphertext number divided by 3 modulo 26 plaintext

A 1 9 i

B 2 18 r

C 3 1 a

D 4 10 j
...

...
...

...

Y 25 17 q

Z 26 26 z

It appears that perhaps dividing by 3 modulo 26 is the same as mul-
tiplying by 9 modulo 26. If this is true, then to decipher another letter,
say E, we could calculate as follows:

ciphertext number times 3 = times 9 plaintext

E 5 19 s
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Once I know what 3 is, then I can calculate this without using trial and
error or searching through the encryption table.

If k is the key to a multiplicative cipher, can we be sure k exists? If
so, how do we find it? Answering these questions will take us on a little
detour, which, strangely enough, starts back at our “bad keys” for our
multiplicative cipher.

We discovered that these bad keys are 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, and one more, which I will now reveal is 13. (You
should check that this is, in fact, bad.) What these numbers have in
common is that they are all multiples of 2, 13, or both. And 2× 13 = 26,
which is not a coincidence. If we were working with Julius Caesar’s 21-
letter alphabet (i.e., modulo 21), then the bad keys would be multiples
of 3 or 7 (or both), since 21 = 3 × 7. Romanian has 28 letters and
28 = 2 × 2 × 7, so the bad keys would be multiples of 2 or 7 (or both).
In Danish, Norwegian, and Swedish, which have 29 letters, 29 would be
the only bad key.

What we have done with these letters (26, 21, 28, 29) is to break
them up into their smallest irreducible components, the prime num-
bers. This process, which is called factoring, can always be done in one
and only one way. This was known at least as long ago as the fourth
century BCE, when Euclid put it in his Elements. What we want to
know is whether our key and our modulus have a common divisor,
that is, a number that divides them both. The number 1 always di-
vides both numbers, but that’s considered trivial and doesn’t count for
this purpose. Euclid’s Elements also tells us how to find a common di-
visor very efficiently by finding the greatest common divisor, or GCD,
which is just what it sounds like. The method for calculating the GCD
is known as the Euclidean algorithm, although we don’t really know
whether Euclid invented it or borrowed it from someone else. An al-
gorithm is a well-defined method for doing something which always
produces a specific correct answer for each input, such as a computer
program.

Here’s an example of the Euclidean algorithm in action, calculating
the GCD of 756 and 210.
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756 = 3× 210+ 126

210 = 1× 126+ 84

126 = 1× 84+ 42

84 = 2× 42+ 0

Each step is a division with a whole-number quotient and a remain-
der, just like we did earlier. The end result is that the greatest common
divisor of 756 and 210 is 42, the last nonzero remainder.

We can use this algorithm to tell whether 6 is a bad key modulo 26
by calculating the GCD of 26 and 6.

26 = 6× 4+ 2

4 = 2× 2+ 0

We see that 2 is a bad key, since 2 divides 6 and 2 divides 26. What if we
have a good key instead, like 3?

26 = 3× 8+ 2

3 = 2× 1+ 1

2 = 1× 2+ 0

The greatest whole number that divides both 3 and 26 is 1, which doesn’t
count, so 3 is a good key.

You might be wondering why we are bothering with Euclid’s algo-
rithm instead of just factoring the numbers and looking for prime factors
in common. There are two answers to that question: First, we will even-
tually see that this algorithm is faster than factoring for large numbers.
Second, once we have done the Euclidean algorithm, we can do a neat
little trick to get 3.

Our next goal is to write 1 with a “3 times something” part and a
“26 times something” part. We will write the equations of the Euclidean
algorithm with 3 and 26 moved to the right-hand side, and every time
we see part of the right-hand side without a 3 or a 26 in it, we will use a
previous line to replace it with 3s and 26s.



14 • Chapter 1

26 = 3× 8+ 2 :

2 = 26 − ( 3 × 8
)

A 26 part and a 3 part, so OK.

= ( 26 × 1
)− ( 3 × 8

)
Make both parts look the same.

3 = 2× 1+ 1 :

1 = 3 − (2× 1) Last part has no 26, so not OK.

= 3 − (
= 2 by a previous line︷ ︸︸ ︷(
26 − ( 3 × 8

))×1)
= ( 3 × 1

)+ ( 3 × 8
)− ( 26 × 1

)
3 parts and 26 parts.

= ( 3 × 9
)− ( 26 × 1

)
Collect 3s and 26s.

We have now written 1 with a 3 part and a 26 part. Why do we want
to do this? Well, we want to work modulo 26, and 26 is the same as 0
modulo 26, so

1 = (3× 9)− (26× 1)

means that

1 ≡ (3× 9)− (0× 1) modulo 26,

or

1 ≡ 3× 9 modulo 26,

or
1

3
≡ 9 modulo 26.

So now we have confirmed that 9 is the number 3, which acts like 1
3

modulo 26. Again, it might seem that we could have figured this out
faster by trial and error. But for large numbers, this way really is much
faster.
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ciphertext number times 9 plaintext

A 1 9 i
...

...
...

...

E 5 19 s
...

...
...

...

Incidentally, the technical term for 3 is the multiplicative inverse
of 3 modulo 26. The general idea of inverses is terribly important in
many branches of mathematics. We’ve now seen additive inverses—
that is, negatives—and multiplicative inverses, and we will see other
examples in the future. A good thing to notice about inverses in mod-
ular arithmetic is that, unlike in ordinary arithmetic, there isn’t usually
any qualitative difference between a number and it’s inverse. That is, in
ordinary arithmetic, 2 is a positive number and−2 is a negative number,
but modulo 26,−2 ≡ 24. So 2 and 24 are arithmetic inverses, but neither
is particularly “negative.” Likewise, in ordinary arithmetic, 3 is a whole
number and 1

3 is a fraction, but modulo 26, 3 and 9 are multiplicative
inverses, despite neither being “fractional.” This is characteristic of situ-
ations where there are only finitely many numbers that are considered
distinct. Another way of looking at it is that there is no real distinction
between forward and backward in these situations. Likewise, there is
no mathematical difference between an arbitrary encryption and an ar-
bitrary decryption for ciphers that use these operations—once you have
figured out the inverse, you can “go forward to go backward.” This will
be sufficiently important in later sections that you might want to think
about it a bit before going on.

1.4 affine ciphers

Now we have a shift cipher with 26 good keys, 1 of which is stupid, and
a multiplicative cipher with 12 good keys, 1 of which is stupid. Both
of these are pretty easy for Eve to attack with a brute-force attack,
meaning that she just tries every possible key until she gets the right
one. Even if Alice and Bob can choose either type of cipher, that still
leaves Eve only 38 choices to try. But what if Alice and Bob could use
more than one cipher at the same time?
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This has the potential to get complicated enough so that we’ll
introduce a little more mathematical notation. We’ll use P to stand for
any number between 1 and 26 that represents a plaintext letter and
C to stand for a number that represents a ciphertext letter. We’ll still
use k to stand for a key. Encrypting using a shift cipher with a key of k
can be written as

C ≡ P+ k modulo 26,

and using a multiplicative cipher with a key of k can be written as

C ≡ kP modulo 26.

Similarly, decrypting in the shift cipher case looks like

P ≡ C− k modulo 26,

and, in the multiplicative cipher case, looks like

P ≡ kC modulo 26.

What if Alice tries to encrypt using two different shift cipher keys,
say k and m?∗ Is that twice as secure? It would look like

C ≡ P+ k+m modulo 26.

Unfortunately for Alice and Bob, from Eve’s point of view this looks
exactly the same as encrypting once using the key k + m, so Eve will
break the cipher just as easily if she tries a brute-force attack. The same
thing will happen if Alice uses two different multiplicative cipher keys.
But what if she uses one of each? Suppose Alice first multiplies the
plaintext by k and then adds m to get the ciphertext:

C ≡ kP+m modulo 26.

Bob will decrypt by first subtracting m and then multiplying by k:

P ≡ k(C−m) modulo 26.

Notice that Bob has to not only reverse the operations, but also reverse
their order! If this seems unintuitive, think about getting dressed and
undressed. To get dressed, you have to put on your socks first, and then

∗Cryptographers sometimes use m to stand for a second cipher key because it comes
after k and the letter l looks too much like the number 1.
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your shoes. To get undressed, you have to remove them both, but in the
opposite order. Otherwise bad things happen.

This combination gives us a new kind of cipher, which is technically
called an affine cipher, although I sometimes prefer to just call it a
kP+m cipher. There are 12 choices for k and 26 choices for m, so there
are 12 × 26 = 312 different keys for this cipher. This is getting to be
enough to make Eve’s brute-force attack a little difficult, although it is
still not very hard if she has access to a computer.

The idea of combining two ciphers to make a product cipher is
a fairly obvious one and goes back quite a long time in history. The
idea that one can combine any decimation method (i.e., multiplicative
cipher; see Section 1.3) with any shift cipher (i.e., additive cipher, see
Section 1.2) goes back at least as far as the 1930s. It’s worth mentioning
one much older cipher that is a particular form of a kP+m cipher. This
is called the atbash cipher, and it’s at least as old as the Biblical Book
of Jeremiah. Like the decimation method, it starts by writing out the
plaintext alphabet. Below it, the ciphertext alphabet is the same alphabet
written backward. We’ll use the modern English alphabet instead of the
Hebrew alphabet:

plaintext: a b c d e f g h i j k l m

ciphertext: Z Y X W V U T S R Q P O N

plaintext: n o p q r s t u v w x y z

ciphertext: M L K J I H G F E D C B A

So why is this a form of a kP + m cipher? When we translate the
numbers into letters, we get

plaintext: a b c d e f g h i j · · · y z

numbers: 1 2 3 4 5 6 7 8 9 10 · · · 25 26

some operation?: 26 25 24 23 22 21 20 19 18 17 · · · 2 1

ciphertext: Z Y X W V U T S R Q · · · B A

We see that the ciphertext obeys the rule

C ≡ 27− P modulo 26.
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Of course we can also write that as

C ≡ (−1)P+ 27 modulo 26,

and modulo 26 that’s the same as

C ≡ 25P+ 1 modulo 26.

So this is a kP+m cipher with the key k = 25, m = 1.

1.5 attack at dawn: cryptanalysis
of simple substitution ciphers

If we continue along this path of making our operations modulo 26 more
and more complicated, we could eventually figure out a way to spec-
ify where every single plaintext letter goes individually. So a can go to
any of the 26 ciphertext letters. Then we could send b to any cipher-
text letter different from the ciphertext for a, so there are 25 choices.
There are 24 ciphertext letters still unused for c, then 23 for d, and
so on, until we have only one letter left for z. A cipher of this kind
is called a monoalphabetic monographic substitution cipher, mono-
graphic meaning that it makes substitutions one letter at a time and
monoalphabetic meaning that the substitution rule is the same for
every letter in the message. That’s a pretty unwieldy name and it’s a
pretty common cipher, so to save time I’m just going to call it a simple
substitution cipher. All told there are 26× 25× 24× · · · × 3× 2× 1 =
403,291,461,126,605,635,584,000,000 ways to make this kind of cipher,
which includes all three of the ciphers we have discussed as well as
the cryptogram puzzles that one finds in many daily papers. That’s way
too many keys to attack by brute force. Unfortunately for Alice and Bob,
Eve has a much better attack available to her.

A very effective way of breaking simple substitution ciphers is
called letter frequency analysis. This technique goes back at least as
far as the ninth-century Arab scholar Abu Yusuf Yaqub ibn Ishaq al-
Sabbah al-Kindi. The idea is simply that some letters in English, Arabic,
or any other human language are used more often than others. For ex-
ample, in a typical English text, the letter e will occur about 13% of the
time, far more than any other. If Eve has a piece of ciphertext where a
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letter, say R, occurs about 13% of the time and more often than any other
letter, then there’s a good chance that R (C = 18) represents e (P = 5). If
the cipher is an additive cipher, then Eve knows that

5+ k ≡ 18 modulo 26,

so there is a very good chance that the key is k = 13.
If Eve has another type of cipher, such as an affine cipher, this might

not be enough information. In this case, she might need to guess another
letter, such as t, which occurs about 8% of the time, or a, which occurs
about 7% of the time. For example, if Eve guesses that R represents e and
F represents a, then she knows that

5k+m ≡ 18 modulo 26,

1k+m ≡ 6 modulo 26.

Now Eve has two equations in two unknowns. Subtracting them gives

4k ≡ 12 modulo 26.

If the number 4 had an inverse modulo 26, then Eve could multiply
each side by that inverse to cancel out the 4 and find k. Unfortunately,
the GCD of 4 and 26 is 2, so 4 doesn’t have an inverse. This means
that our equation has either no solutions or more than one solution. If
there are no solutions, it means in this case that Eve probably made a
bad guess from the letter frequencies and she should try again. But in
this case it turns out that there are two solutions, k = 3 and k = 16,
and in either case m must be 6 − 1k modulo 26. So the possibilities are
k = 3 and m = 3 or k = 16 and m = 16. Eve can then try to decrypt
using each combination and see if she gets readable text. Since a, t, and
several other letters have similar frequencies, it’s possible that neither
one is correct, in which case Eve has to go back to the beginning and
try to guess e and a again. It might take a few guesses, but in the end
Eve should be able to determine the correct key a lot faster than using
brute force.

The one big caveat to this technique is that you need to have enough
ciphertext to work with. The frequencies I have mentioned are only
averages, and short messages may very well have radically different
letter frequencies. Just imagine trying to decrypt the message “Zola is
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taking zebras to the zoo,” for instance. We will see how this problem can
compound itself when cryptanalyzing more complicated substitution
ciphers in the future.

1.6 just to get up that hill: polygraphic substitution ciphers

There are a couple of obvious ways to make ciphers on which letter
frequency analysis doesn’t work—you could change the substitution rule
so that it’s different at different places in the message (polyalphabetic)
or you could make the substitutions work on more than one letter at a
time (polygraphic). Both have their places in modern cryptography, but
we are going to turn now to polygraphic ciphers.

The first thing you need to decide on in a polygraphic cipher is a
block size. Ciphers with block size 2 are digraphic, those of block size
3 are trigraphic, and so on. Digraphic ciphers were proposed as early
as the sixteenth century, although the first practical ones date from the
nineteenth century. In 1929, Lester S. Hill invented the Hill cipher,
which can be used with any block size. We will illustrate with a block
size of 2. Divide up the plaintext into 2-letter blocks. If there are unfilled
spaces in the last block, fill them with any random letters—these are
called nulls, or padding.

ja ck ya nd ji ll ya nd ev ex

Let the first letter in each plaintext block be P1 and the second letter be
P2. Then calculate two ciphertext letters using the formulas

C1 ≡ k1P1 + k2P2 modulo 26,

C2 ≡ k3P1 + k4P2 modulo 26,

where k1, k2, k3, and k4 are numbers between 1 and 26, which to-
gether make up the key. For example, if the key is 3, 5, 6, 1, then the
formulas are

C1 ≡ 3P1 + 5P2 modulo 26,

C2 ≡ 6P1 + 1P2 modulo 26.

If the plaintext is

plaintext: ja ck ya nd ji ll ya nd ev ex

numbers: 10, 1 3, 11 25, 1 14, 4 10, 9 12, 12 25, 1 14, 4 5, 22 5, 24
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then the numbers for the first two letters of the ciphertext are

C1 ≡ 3× 10+ 5× 1 ≡ 9 modulo 26,

C2 ≡ 6× 10+ 1× 1 ≡ 9 modulo 26.

The x at the end of the plaintext is a null.
For the rest of the message we have

plaintext: ja ck ya nd ji ll ya nd ev ex
numbers: 10, 1 3, 11 25, 1 14, 4 10, 9 12, 12 25, 1 14, 4 5, 22 5, 24

Hill formulas: 9, 9 12, 3 2, 21 10, 10 23, 17 18, 6 2, 21 10, 10 21, 0 5, 2
ciphertext: II LC BU JJ WQ RF BU JJ UZ EB

Notice that the j of jacky gets mapped to an I, but the j of jilly gets
mapped to aW. Likewise the two l’s of jill get mapped to different letters,
but the j and the a of jacky both end up as I’s. This, of course, is because
the letters are not encrypted individually, but as pairs. Also notice that
yand gets mapped to BUJJ both times.

In order to decipher the message, Bob needs to solve a system of
two equations in two unknowns:

C1 ≡ k1P1 + k2P2 modulo 26,

C2 ≡ k3P1 + k4P2 modulo 26.

There are lots of ways to do this; one way is to multiply the top equation
by k4 and the bottom equation by k2 and then subtract. For instance, to
decrypt the last block of our example, Bob observes that

5 ≡ 3P1 + 5P2 modulo 26,

2 ≡ 6P1 + 1P2 modulo 26,

which he can make into

1× 5 ≡ (1× 3)P1 + (1× 5)P2 modulo 26,

5× 2 ≡ (5× 6)P1 + (5× 1)P2 modulo 26

and subtract to get

1× 5− 5× 2 ≡ (1× 3− 5× 6)P1 modulo 26.
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Similarly, Bob can multiply the top equation by k3 and the bottom
equation by k1, which gives him

6× 5 ≡ (6× 3)P1 + (6× 5)P2 modulo 26,

3× 2 ≡ (3× 6)P1 + (3× 1)P2 modulo 26.

This time he takes the bottom minus the top to get

3× 2− 6× 5 ≡ (3× 1− 6× 5)P2 modulo 26.

Notice that in both cases there is a −27 on the right-hand side, which
is k1k4 − k2k3. This number is called the determinant of the system.
If the greatest common divisor of the determinant and 26 is 1, then the
determinant has a multiplicative inverse, and Bob can multiply each side
of his equations by that inverse to find P1 and P2. This is very similar to
the case of ordinary arithmetic, where two equations in two unknowns
can always be solved as long as the determinant of the system is not
equal to zero.

In our example, the determinant is −27, as we said, which is the
same as 25 modulo 26. If Bob runs through the Euclidean algorithm, he
will find that

25 ≡ 25 modulo 26,

so he gets

P1 ≡ ((1× 5)− (5× 2))× 25 modulo 26,

P2 ≡ ((3× 2)− (6× 5))× 25 modulo 26,

which finally reduces to

P1 ≡ 5 modulo 26, P2 ≡ 24 modulo 26,

or ex.
In general, if k1k4 − k2k3 has an inverse, then the solution to

C1 ≡ k1P1 + k2P2 modulo 26,

C2 ≡ k3P1 + k4P2 modulo 26

is
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P1 ≡ (k1k4 − k2k3)(k4C1 − k2C2) modulo 26,

P2 ≡ (k1k4 − k2k3)(−k3C1 + k1C2) modulo 26.

The general form of this method for solving a system of several equa-
tions in the same number of unknowns is usually known as Cramer’s
rule, named for Gabriel Cramer. Cramer was an eighteenth-century
Swiss mathematician who did much work studying systems of equa-
tions and the curves they describe. The same rule seems to have been
published slightly earlier by Colin Maclaurin in Scotland. Cramer’s
rule is not the fastest way of solving large systems of equations, but
it’s certainly good enough for the block sizes one is likely to use in a
Hill cipher.

Notice that if we give new names to the numbers

m1 = (k1k4 − k2k3)(k4),

m2 = (k1k4 − k2k3)(−k2),
m3 = (k1k4 − k2k3)(−k3), and

m4 = (k1k4 − k2k3)(k1),

then we can write

P1 ≡ m1C1 +m2C2 modulo 26,

P2 ≡ m3C1 +m4C2 modulo 26.

We can think of this system of equations as an inverse of the original
system, and we can think of m1,m2,m3,m4 as a sort of “inverse key” for
the original encryption key k1, k2, k3, k4. In our example this key would
be 25× 1, 25×−5, 25×−6, 25× 3, or 25, 5, 6, 23 modulo 26. Once Bob
has worked this out, the process of decryption works exactly the same
as encryption. This is another example of the idea of going forward to
go backward that we talked about in Section 1.3.

It’s a little involved to work out exactly how many good keys (i.e.,
keys where the determinant has an inverse) there are for a Hill cipher,
but it’s about 45,000 for a block size of 2 and about 52,000,000,000 for a
block size of 3, so a brute-force attack is getting to be rather difficult.
Also note that Bob needs to be aware that there may be nulls at the end
of his message. This ought to be clear when he reads it.
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In 1931, Hill followed up his original cipher with several extensions.
The most important one is now generally known as the affine Hill ci-
pher, because it combines the original Hill cipher with an addition step,
just like we combined the multiplicative and additive ciphers to get the
affine cipher. If we let the block size be 2 again, the new formulas are

C1 ≡ k1P1 + k2P2 +m1 modulo 26,

C2 ≡ k3P1 + k4P2 +m2 modulo 26,

where the key now consists of six numbers, k1, k2, k3, k4,m1, andm2, all
between 1 and 26. Once again, this is a good key as long as the greatest
common divisor of the determinant k1k4 − k2k3 and 26 is 1. (The new
key numbers m1 and m2 can be anything.) To decrypt, Bob just needs
to subtract m1 from C1 and m2 from C2 and then solve the system as
before.

A letter frequency analysis no longer works on a polygraphic cipher,
because, as you can see from the example, the same letter in the plain-
text doesn’t always go to the same letter in the ciphertext. Therefore, the
whole idea of guessing which letter is e fails. On the other hand, we also
saw that the same plaintext block always goes to the same ciphertext
block, and in the case of block size 2 or 3, it is possible to exploit this.
For example, the most common digraph, or 2-letter block, is “th,” which
occurs, according to one study, approximately 2.5% of the time. The
most common trigraph (3-letter block) is “the,” which occurs, by the
same study, just under 1% of the time. Eve could use facts like these
to do a digraph or trigraph frequency analysis and perhaps break a di-
graphic or trigraphic substitution cipher. However, for larger block sizes
this quickly gets very difficult, as there are a lot of possible blocks and
not a lot of difference between the frequencies of the various blocks.
Even in 1929, Hill managed to construct a machine that used a set of
gears to mechanically encipher texts using block size 6 and was thus es-
sentially unbreakable using frequency analysis. Unfortunately for Hill,
his machine never caught on.

The Hill ciphers were never used much—they were too unwieldy
to use by hand, and cryptography via mechanical devices went in the
direction of polyalphabetic substitution ciphers instead. Hill’s idea of
using systems of equations has regained substantial importance with
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the advent of digital computers in cryptography, but from a modern
point of view, these ciphers used by themselves have the problem that
they are badly vulnerable to a type of attack that is rather different from
the ones we have talked about so far.

1.7 known-plaintext attacks

So far, all of the cryptanalytic attacks we have discussed are ciphertext-
only attacks, where all that Eve knows is the ciphertext message she has
intercepted passing between Alice and Bob. But suppose that somehow
Eve has gotten hold of both the plaintext and ciphertext of some message
(or part of a message) that Alice has sent. Then she can try a known-
plaintext attack, where she knows both the plaintext and the ciphertext
and the goal is to get the key. Once she has the key, she can find out the
content of not just the message she has, but other messages or parts of
messages sent with the same key.

In the case of block size 2 and the original Hill cipher, suppose Eve
recovers four letters of plaintext, P1, P2, P3, and P4, and the matching
letters of ciphertext, C1, C2, C3, and C4. Then she knows

C1 ≡ k1P1 + k2P2 modulo 26,

C2 ≡ k3P1 + k4P2 modulo 26,

C3 ≡ k1P3 + k2P4 modulo 26,

C4 ≡ k3P3 + k4P4 modulo 26.

From Eve’s point of view, only the key numbers are unknowns, so she
has four equations in four unknowns, and she can solve the system to
recover the key.

In the earlier example, if Eve managed to recover the last two blocks
of plaintext, she will know

21 ≡ k15+ k222 modulo 26,

0 ≡ k35+ k422 modulo 26,

5 ≡ k15+ k224 modulo 26,

2 ≡ k35+ k424 modulo 26.
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This is really two sets of equations,

21 ≡ k15+ k222 modulo 26,

5 ≡ k15+ k224 modulo 26

and

0 ≡ k35+ k422 modulo 26,

2 ≡ k35+ k424 modulo 26.

Eve could solve each set with Cramer’s rule in the same way that Bob
solved his equations in the previous section. For the first set, the rule
gives

k1 ≡ (5× 24− 22× 5)(24× 21− 22× 5) modulo 26,

k2 ≡ (5× 24− 22× 5)(−5× 21+ 5× 5) modulo 26.

If you finish the calculations, you will see

k1 ≡ 3 modulo 26, k2 ≡ 5 modulo 26.

Similarly, the second set gives Eve

k3 ≡ (5× 24− 22× 5)(24× 0− 22× 2) modulo 26,

k4 ≡ (5× 24− 22× 5)(−5× 0+ 5× 2) modulo 26.

which gives her the last two key numbers:

k3 ≡ 6 modulo 26, k4 ≡ 1 modulo 26.

In general, Eve will need to recover only as many blocks of plain-
text as there are letters in a block. So it’s almost as easy to break the
Hill cipher using a known-plaintext attack as it is to decipher a mes-
sage. This is considered unacceptable, so the Hill cipher is never used in
its original form. The idea of using a system of equations for polygraphic
encryption, however, forms a piece of many modern ciphers.

1.8 looking forward

I warned you in the preface to this book that some of the ciphers I discuss
in this book are considered obsolete in today’s world, and that includes
all the ciphers in this chapter and the next two, more or less. For one
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thing, they all work on the letters of the alphabet, and in the modern
world we want to encrypt numbers, pictures, sounds, and all sorts of
other things. That’s not really a serious problem, since we know how
to represent all these types of information using numbers, and we can
easily adjust our ciphers to use numbers instead of letters. Additive and
multiplicative ciphers are vulnerable to brute-force attacks because they
don’t have enough keys, and with computers available to help break
ciphers, affine ciphers don’t really have enough keys either. Perhaps
more importantly, all monoalphabetic monographic substitution ciphers
are vulnerable to letter frequency attacks. Monoalphabetic substitution
ciphers are significant in modern times because they are the basis for,
among other things, the polyalphabetic substitution ciphers we discuss
in Chapter 2. To understand that chapter, you need to understand this
one first. Polyalphabetic substitution ciphers are no longer considered
state of the art in security either, but we’ll get to that at the end of
Chapter 2.

Polygraphic substitution ciphers are resistant to frequency analysis
if the block size is large enough. In fact, one of the two main types of
modern cipher, the block cipher (which we define in Chapter 5), is some-
times thought of as a type of polygraphic substitution cipher acting on
an alphabet of just 0 and 1. The examples we have seen so far, the Hill ci-
pher and affine Hill cipher, are vulnerable to known-plaintext attacks, as
I have shown. So these particular polygraphic ciphers are not considered
secure. As I mentioned, however, these two ciphers are used as building
blocks in modern block ciphers, including the current US government
standard in block ciphers, which I describe in Chapter 4. So you can’t
understand modern block ciphers without the affine Hill cipher, and you
can’t properly understand that without the additive, multiplicative, and
affine ciphers.

I should point out that the cryptanalysis techniques discussed in this
chapter, while not state of the art, are still very important in understand-
ing modern cryptanalytic techniques. Letter frequency is not relevant
with regard to a modern block cipher, but frequency attacks certainly
are. The differential attacks discussed in Chapter 4, for instance, rely
heavily on the same sorts of statistical frequency calculations as letter
frequency attacks, but applied to the differences between ciphertexts
rather than the ciphertexts themselves. Similarly, the linear attacks that
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I mention in Chapter 4 are more sophisticated versions of the known-
plaintext attack I showed you against the Hill cipher. Modern ciphers do
not consist solely of the types of equations that the Hill and affine Hill
ciphers do, but they can sometimes be approximated by such equations.
Linear cryptanalysis takes advantage of this fact.

Finally, you might be wondering whether the concepts and notation
of modular arithmetic were really necessary, or whether there were eas-
ier ways to describe the ciphers in this chapter. Additive, multiplicative,
and affine ciphers were in fact used and analyzed perfectly well before
anyone thought to describe them with modular arithmetic. The Hill and
affine Hill ciphers, on the other hand, were invented with modular arith-
metic in mind and are harder to deal with without those concepts. Even
more importantly, modular arithmetic is critical for understanding the
exponential ciphers and public-key ciphers of Chapters 6, 7, and 8.



2
Polyalphabetic Substitution Ciphers

2.1 homophonic ciphers

Polygraphic ciphers, which work on more than one letter at a time, are
one way to make ciphers that resist a straightforward letter frequency
analysis. As we have seen, they can be difficult or impossible to do by
hand, even with 3-letter blocks, and somewhat cumbersome even with
machines. A polyalphabetic cipher, on the other hand, still works on 1
letter at a time like a monoalphabetic cipher, but it changes the substitu-
tion rule from letter to letter. This can be as simple as giving Alice, the
encipherer, more than one ciphertext option for some or all plaintext let-
ters, which she can choose from at whim. This is called a homophonic
cipher—in linguistics, homophones are 2 letters or groups of letters that
are spelled differently but pronounced the same. In cryptography, ho-
mophones are letters or groups of letters that are written differently in
the ciphertext but deciphered the same.

As with many other aspects of cryptography, the ideas behind
homophonic ciphers seem to have been first explored by the Arabs. The
first known cipher that explicitly uses homophones as a central tech-
nique, however, appeared in Italy, having been prepared in 1401 by a
cipher secretary of the Duchy of Mantua. This cipher appears to simply
be a version of the atbash cipher, with the addition of 12 extra symbols:
3 each for the letters a, e, o, and u, which were high-frequency letters
in fifteenth-century Italian. A representation of this idea with modern
English letters and typographical symbols might look like this:
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plaintext: a b c d e f g h i j k l m

ciphertext: Z Y X W V U T S R Q P O N

! @

% &

) -

plaintext: n o p q r s t u v w x y z

ciphertext: M L K J I H G F E D C B A

# $

* (

= +

One suspects that this didn’t improve the security of such a sim-
ple cipher by very much, but the idea is sound: if the ciphertext letters
corresponding to high-frequency plaintext letters are randomly divided
up between multiple options, a straightforward letter frequency analy-
sis becomes rather difficult. When used properly, the cipher shown here
will produce a ciphertext in which no letter comes even near to the 13%
frequency that one expects for the ciphertext letter corresponding to e.
Instead, there will be four different symbols (V, @, &, and -), which each
occur with just over 4% frequency. Lots of other letters also occur with
4% frequency, so this doesn’t help the cryptanalyst much. This works
only if Alice really picks one of the four symbols at random. A common
pitfall is for a sloppy encipherer to primarily use only one of the options
(say V, which might be more convenient on a keyboard) and only occa-
sionally use the others—this will pretty much destroy the usefulness of
the homophones.

It is not clear how much was known in Europe at this point in time
about letter frequency analysis. The fact that the Mantuan cipher gives
homophones only for vowels, which are high frequency, leads one to
suspect that they knew something about the subject. We don’t know for
sure because unlike in the Arab world, where cryptography was mostly
an academic pursuit, in Renaissance Europe it was a deadly serious part
of diplomacy and its secrets were kept well guarded. It would not be
until 1466 or 1467 that a description of frequency analysis would appear
in print in Europe, by Leon Battista Alberti, whomwe shall meet shortly.
And due, perhaps, to the stereotypical conservatism of diplomats, the
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first ciphers with homophones for consonants as well as vowels did not
appear until the mid-1500s.

2.2 coincidence or conspiracy?

So far we have been assuming Kerckhoffs’ principle without too much
reflection when we take the role of Eve. Often, however, Eve doesn’t
even need to steal the system in order to make some good guesses about
how it works. For instance, how might Eve guess that a homophonic
system is being used? True, it will generally have more than 26 char-
acters. But perhaps the message is in a language other than English,
or perhaps not all the possible ciphertext letters actually appear in the
message. Can we tell what is going on?

Making a table of the frequency of each letter in the ciphertext is a
good first step. Suppose Eve has intercepted this ciphertext:

QBVDL WXTEQ GXOKT NGZJQ GKXST RQLYR

XJYGJ NALRX OTQLS LRKJQ FJYGJ NGXLK

QLYUZ GJSXQ GXSLQ XNQXL VXKOJ DVJNN

BTKJZ BKPXU LYUNZ XLQXU JYQGX NTYQG

XKXQJ KXULK QJNQN LQBYL OLKKX SJYQG

XNGLU XRSBN XOFUL YDSXU GJNSX DNVTY

RGXUG JNLEE SXLYU ESLYY XUQGX NSLTD

GQXKB AVBKX JYYBR XYQNQ GXKXZ LNYBS

LRPBA VLQXK JLSOB FNGLE EXYXU LSBYD

XWXKF SJQQS XZGJS XQGXF RLVXQ BMXXK

OTQKX VLJYX UQBZG JQXZL NG

Alice has removed the spaces from her plaintext and divided it up into
5-letter groups in order to make things harder for Eve by obscuring
any short, common words. Eve starts by counting how often each letter
appears and what percentage each letter takes up of the 322 letters total
(see Table 2.1).

There are only 23 distinct characters in the ciphertext, which could
mean that Eve is dealing with a language with less than 26 letters, or
that Alice used some sort of polygraphic system which doesn’t need all
of the characters, or just that some letters in the plaintext don’t appear.
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Table 2.1.
Letter frequencies observed in our ciphertext

Number of Percent
Letter Occurrences Frequency

A 3 .9
B 14 4.3
D 6 1.9
E 6 1.9
F 5 1.6
G 23 7.1
J 22 6.8
K 19 5.9
L 30 9.3
M 1 .3
N 20 6.2
O 7 2.2
P 2 .6
Q 30 9.3
R 9 2.8
S 17 5.3
T 9 2.8
U 13 4.0
V 8 2.5
W 2 .6
X 47 14.6
Y 21 6.5
Z 8 2.5

How does Eve’s table compare with the expected frequencies in
English text? See Table 2.2.

It seems reasonably plausible that what we have is a simple sub-
stitution cipher that just doesn’t happen to have some of the lowest-
frequency letters in its plaintext. If homophones were being used, we
would expect to see more low-frequency letters and fewer (if any) high-
frequency ones. It would be nice if we could make this observation more
quantitative, though.

The tool for that is called the index of coincidence, and it was in-
vented by William Friedman, easily one of the most important figures
in early twentieth-century cryptology. Friedman never set out to be a
cryptologist. He studied genetics in college and graduate school and
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Table 2.2.
Letter frequencies in English text compared with our ciphertext

Percent Frequency Percent Frequency
Letter in English Text Letter in Our Ciphertext

e 12.7 X 14.6
t 9.1 L 9.3
a 8.2 Q 9.3
o 7.5 G 7.1
i 7.0 J 6.8
n 6.7 Y 6.5
s 6.3 N 6.2
h 6.1 K 5.9
r 6.0 S 5.3
d 4.3 B 4.3
l 4.0 U 4.0
c 2.8 R 2.8
u 2.8 T 2.8
m 2.4 V 2.5
w 2.4 Z 2.5
f 2.2 O 2.2
g 2.0 D 1.9
y 2.0 E 1.9
p 1.9 F 1.6
b 1.5 A .9
v 1.0 P .6
k .8 W .6
j .2 M .3
x .2
q .1
z .1

was invited to join the Department of Genetics at the Riverbank Lab-
oratories, an organization founded and run by an eccentric Illinois
millionaire. Friedman got involved in cryptology when he was asked
to help with photography for a group attempting to find hidden ciphers
in the works of Shakespeare. Although he eventually concluded that
no such ciphers were present, he found both his future wife and his
future career in the Riverbank cryptology group. Friedman left River-
bank to join the US Army during World War I and eventually moved to
the National Security Agency when it was formed after World War II.
His wife, Elizebeth, had her own distinguished career in the meantime,
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solving ciphers for the US Coast Guard, the Treasury Department, and
several other government agencies.

When he invented the index of coincidence, Friedman was consid-
ering the chance that if you pick two letters at random, they will be
the same. First, suppose you are picking from a large number of English
letters distributed at random, so that each letter appears equally often.
The chance that the first letter you pick will be an a is 1/26, and the
chance that you also pick an a the second time is also 1/26. In proba-
bility, if you want to know the chance of two independent things both
happening, you multiply the probabilities, so the chance that you will
pick two letters that are a is (1/26) × (1/26) = 1/262. Likewise, the
chance that you will pick two that are b is 1/262, the chance that you
will pick two that are c is 1/262, and so on. What is the chance that
you will pick two of the same letter, regardless of which letter it is? If
you want to know the probability of either of two mutually exclusive
things happening, you add the probabilities, so the chance that you will
pick two of any letter is

1

262︸︷︷︸
two are “a”

+ 1

262︸︷︷︸
two are “b”

+ 1

262︸︷︷︸
two are “c”

+ · · ·+ 1

262︸︷︷︸
two are “z”

= 26× 1

262
= 1

26
≈ .038.

The chance of picking two identical letters out of a selection of text is
called the index of coincidence of that text, so the index of coincidence
of random text (with English letters) is about .038, or 3.8%.

Now, suppose you are picking from a large amount of actual English
text. We know that the chance that you will pick the letter a is about
8.2%, or .082. So the chance that you will pick two letters that are a is
(.082)2. The chance that you will pick two that are b is about (.015)2, the
chance that you will pick two that are c is about (.028)2, and so on. The
total probability that you will pick two of the same letter is

(.082)2︸ ︷︷ ︸
two are “a”

+ (.015)2︸ ︷︷ ︸
two are “b”

+ (.028)2︸ ︷︷ ︸
two are “c”

+ · · · + (.001)2︸ ︷︷ ︸
two are “z”

≈ .066.

In other words, the index of coincidence of actual English text is about
.066, or 6.6%.
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The first thing Friedman realized is that this number won’t change if
you apply a simple substitution cipher to the text—the order in which the
numbers are added will change, but the total won’t. So if our ciphertext
was encrypted with a simple substitution cipher, we would expect the
index of coincidence to be about .066, and if the cipher had homophones,
we would expect it to be substantially different. In fact, because there
would be less variation in the frequencies, we would expect the index
to be between .038 and .066, since .038 is the index if all 26 letters are
the same, and this turns out to be the minimum possible index for an
alphabet of 26 letters.

Let’s compute the index of coincidence for our ciphertext. The
chance that we will pick an A, according to our table, is 3/322, since
there are 3 letters that are A out of 322 letters total. For our second pick,
we will assume that we don’t pick exactly the same A again, although
we can pick one of the other two letters that are A. Then the chance of
picking an A the second time is 2/321, since there are 2 letters that
are A left out of 321 letters left. The chance of picking two letters
that are A is (3/322) × (2/321). Similarly, the chance of picking two
that are B is (14/322) × (13/321), and so on. The index of coincidence
for our ciphertext is

3

322
× 2

321
+ 14

322
× 13

321
+ · · · + 8

322
× 7

321
≈ .068.

This is definitely not closer to .038 than .066, so it’s a very good bet that
we have a simple substitution cipher. Friedman called this test the phi
test to distinguish it from other tests using the index of coincidence,
which we will see later. You may want to amuse yourself by trying to
solve the cipher using the techniques of Section 1.5.

On the other hand, the following ciphertext can be calculated to
have an index of coincidence of approximately .046—not as low as ran-
dom text, but much lower than a simple substitution cipher, even despite
having more than 26 characters, which tends to raise the index.
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IW*CI W@G*L &H&L( ASN*A E)U&V $CNPC

SIW*E DDSA@ LTCIH !(A#C V%EIW *!#HA

*IW@N TAEHR $CI(C JTS!C SHDS# SIW@S

DVW@R G$HH* SIW*W )JH@( CUGDC IDUIW

*&AIP GWTUA TLS$L CIW*D IWTG! #HATW

TRG$H H*SQT U$G*I W@S)D GHWTR APBDG

*S%EI W@WDB @HIG@ IRWWX H&CV+ XHWVG

*LLXI WW#HE G)VG@ HHI#A AEGTH @CIAN

W*L!H Q%I!L )DAAN R)BTI B)K#C VXC#I

HDGQX ILXIW IW@VA *&B!C SIWTH E**S$

UA(VW I

Again, feel free to try and cryptanalyze this—I’ll even give you a
hint. The cipher is an additive cipher plus homophones added for the
vowels, very similar to the Mantuan cipher. Thus you should probably
look for ciphertext letters that correspond to high-frequency plaintext
consonants.

2.3 alberti ciphers

A cipher with homophones is polyalphabetic in the sense that some or
all letters have more than one possible substitution rule. However, the
name polyalphabetic seems to imply that more than one entire cipher-
text “alphabet” should be in use. To make this work without a very large
number of symbols, Alice needs to do something more systematic than
pick a ciphertext letter at random from a list. Leon Battista Alberti, an
Italian Renaissance author, artist, architect, athlete, philosopher, and all-
around Renaissance man, wrote the first known description of a method
by which she can do that.

Alberti’sDe Componendis Cifris, orA Treatise on Ciphers, was writ-
ten in 1466 or early 1467, and its 25 handwritten pages make up Europe’s
earliest known scholarly work on cryptography and cryptanalysis. This
book explains for the first time in Europe how to do letter frequency
analysis, it discusses the use of nulls and homophones, and it intro-
duces Alberti’s cipher disk, which could be considered the first true
polyalphabetic system as well as the first cipher machine for substitution
ciphers.
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Figure 2.1. Alberti’s cipher disk.

The cipher disk consists of two circular plates (made of copper, in
Alberti’s case), a larger stationary plate and a smaller movable one, held
together with a pin through the center, as shown in Figure 2.1. A ring
around the outside of each plate is divided into as many cells as there
are letters of the alphabet. I will use the English alphabet, so each ring
has 26 cells, and the disks are made so that all 52 cells can be seen at
once. The plaintext is written in the outer ring, in the usual order, and a
ciphertext alphabet is written in the inner ring, “not in regular order like
the stationary characters, but scattered at random.” If the inner ring did
not move, we would have a classic monoalphabetic substitution cipher.

Alberti explains how we can coordinate the movements of the rings
in order to bring new alphabets into play. Alice and Bob agree on either
a plaintext or a ciphertext letter as the “index.” Alice starts the message
by writing a letter of the other alphabet—this indicates that the disk
should be rotated so that the index is next to this letter.

Time for an example: suppose the ciphertext alphabet is arranged in
this order:

ciphertext: C F I L O R U X A D G J M

P S V Y B E H K N Q T W Z
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Figure 2.2. Alberti’s cipher disk rotated to a different position.

If C is the index letter, then starting the message with the key letter a
would indicate that the disks are placed as in Figure 2.1.

Alice can now encrypt the plaintext Leon Battista Alberti as

aJOSPFCHHAEHCCJFOBHA

Alberti says after 3 or 4 words, one should rotate the disks, indicat-
ing this by a new key letter in the ciphertext. For instance, Alice can
choose e as the next key letter, meaning that she (and Bob) rotate the
disks to the position shown in Figure 2.2.

So the full plaintext, Leon Battista Alberti, Father of Western
Cryptography, might come out as

aJOSPFCHHAEHCCJFOBHAeFQVLCPGFECSVCPDWPKJVGIPQJLK

Bob, who must have an identical cipher disk, decrypts the message using
first the position where C is next to a and later the position where C is
next to e.

Eve has a problem if she wants to cryptanalyze the cipher. Even if
she knows that Alberti’s system is being used and even if she knows



Polyalphabetic Substitution • 39

that the lowercase letters are key letters, if she doesn’t know the order
of the ciphertext alphabet, she can’t decrypt in the way that Bob can. If
Alice has changed disk positions often enough, and the message isn’t so
long that she has to reuse disk positions too often, then Eve won’t have
enough text from any one disk position to do a frequency attack either.
On the other hand, if Eve knows that the key letters are an indication
of how much to rotate the cipher disk, she may be able to compensate
for the rotation first and then break the cipher using a frequency attack.
Furthermore, if Alice changes the rotation only every 3 or 4 words, as
Alberti suggests, a lot of information contained in the patterns of re-
peated letters within words will be preserved, and Eve may be able to
use that. A better cipher would both change alphabets more frequently
and make it less obvious where and how the changes occurred.

Before we go on, I can’t resist pointing out yet another application
of modular arithmetic in our example, even though it’s an anachro-
nism. The rotation of the cipher disk is equivalent to an enciphering
step using an additive cipher, so this can be seen as a combination of an
additive cipher and whatever kind of cipher produced the alphabet on
the inner ring. In our case this was a multiplicative cipher, so we have
a combination of an additive cipher and a multiplicative cipher, like the
kP+m ciphers we saw in Section 1.4. Unlike those ciphers, this time the
addition is done before the multiplication.

plaintext: a b c d e f g h i j · · · y z

numbers: 1 2 3 4 5 6 7 8 9 10 · · · 25 26

plus 22: 23 24 25 26 1 2 3 4 5 6 · · · 21 22

rotated plaintext: w x y z a b c d e f · · · u v

rotated numbers times 3: 17 20 23 26 3 6 9 12 15 18 · · · 11 14

ciphertext: Q T W Z C F I L O R · · · K N

2.4 it’s hip to be square: TABULA RECTA,
or vigenère square ciphers

Although Alberti gets credit for the first European book on cryptog-
raphy and the first printed book on architecture, someone else gets
credit for the first printed book on cryptography. That was Johannes
Trithemius, or Johannes of Trittenheim. Trithemius was abbot of
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the Benedictine abbey of Sponheim, now in the state of Rhineland-
Palatinate, Germany. Trithemius was an important author in the late
fifteenth and early sixteenth centuries, and a founder of both cryptog-
raphy and library science in Europe. He was also intensely interested in
alchemy, astrology, demons, spirits, and other occult matters, to a de-
gree that was controversial at the time and may seem positively bizarre
to us now. In many cases it is difficult to tell whether Trithemius is writ-
ing about cryptography, magic, or both, and many of his writings were
dismissed for centuries as divorced from reality. Recently, evidence has
surfaced suggesting that many, if not all, of Trithemius’ stranger writ-
ings were, in fact, covers for more examples of cryptography and other
concealed writing.

Be that as it may, Trithemius is best known among cryptography
buffs today for his tabula recta, or “proper table,” sometimes also called
a square table, letter square, or tableau. Imagine, for starters, an Al-
berti cipher disk with the ciphertext alphabet in the same order as the
plaintext. We start with the disk rotated one position to get an additive
cipher:

plaintext: a b c d e f g · · · t u v w x y z

ciphertext: B C D E F G H · · · U V W X Y Z A

Then rotate two positions, then three, then four, . . . until eventually we
get back to the starting position.

plaintext: a b c d e f g · · · t u v w x y z

ciphertext: B C D E F G H · · · U V W X Y Z A

ciphertext: C D E F G H I · · · V W X Y Z A B

ciphertext: D E F G H I J · · · W X Y Z A B C
...

...

ciphertext: Y Z A B C D E · · · R S T U V W X

ciphertext: Z A B C D E F · · · S T U V W X Y

ciphertext: A B C D E F G · · · T U V W X Y Z

This table has all the same information as the cipher disk but in
a form that shows it all at once. More importantly, Trithemius used his
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table in a rather different way from Alberti. Instead of Alice shifting to a
new disk position of her choosing at a time of her choosing, Trithemius
suggests that she change ciphertext alphabets every single letter and
do it by an orderly procession down the table, starting over when she
gets to the bottom. This is called a progressive system. Progressive sys-
tems have some advantages; they obliterate patterns of repeated letters
in words like attack or meeting, and they don’t leave telltale key let-
ters in the ciphertext. On the other hand, this system doesn’t have a
key at all. In modern terms that’s a no-no, as we saw in Section 1.2.
Trithemius recognized that the alphabets could go in various different
orders; in addition to the tabula recta, he also presented a tabula aversa
(reversed table), where the alphabets ran the other direction, and var-
ious other tables in various orders. None of these systems seem to be
keyed, however.

We need to go back to Italy to see how a key can be added to this
system. This seems to have been first suggested byGiovan Battista Bel-
laso, about whom not a lot else is known. He was apparently a secretary
for one or more cardinals of the Catholic Church, which would certainly
have given him occasion to study ciphers and secret writing. He pub-
lished three short books on cryptography in 1553, 1555, and 1564, each of
which contains various versions of a polyalphabetic cipher. Rather than
using alphabets in the standard order, Bellaso used reciprocal alphabets,
meaning that the role of the encryption and decryption alphabets can
be swapped without changing the cipher. Thus decryption follows the
same process as encryption, which is convenient in practice. The atbash
cipher from Section 1.4 is one example of this, and so are Trithemius’
tabula aversa alphabets.

For simplicity, we will stick with Trithemius’ tabula recta. Bellaso’s
innovation was essentially to add a column of key letters down the side
of the table:
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a b c d e f g · · · t u v w x y z

a B C D E F G H · · · U V W X Y Z A

b C D E F G H I · · · V W X Y Z A B

c D E F G H I J · · · W X Y Z A B C
...

...

x Y Z A B C D E · · · R S T U V W X

y Z A B C D E F · · · S T U V W X Y

z A B C D E F G · · · T U V W X Y Z

Alice and Bob agree on a keyword, or keyphrase, which Alice writes
above the plaintext, repeating as necessary:

keyphrase: t r e t e s t e d i l e o n e t r e

plaintext: s p o r t i n g h i s c l o t h e s

Then Alice encrypts each letter of the plaintext using the cipher alphabet
corresponding to the appropriate key letter:

keyphrase: t r e t e s t e d i l e o n e t r e

plaintext: s p o r t i n g h i s c l o t h e s

ciphertext: M H T L Y B H L L R E H A C Y B W X

Note that as with the polygraphic ciphers of Section 1.6, the same letter
in the plaintext will become a different letter in the ciphertext, depend-
ing on position. For example, the three plaintext letters that are s become
M, E, and X, respectively. We call this form of polyalphabetic cipher a
repeating-key cipher for obvious reasons. The key doesn’t have to be a
word or phrase, but that’s the most common form.

As I mentioned earlier, Bellaso used a more complicated system
with ciphertext and key alphabets in various orders. From a mathemat-
ical point of view, using the tabula recta as I have set it up has the
advantage that it is easily represented using modular arithmetic:
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keyphrase: t r e t e s t e d i l e o n e t r e
numbers: 20 18 5 20 5 19 20 5 4 9 12 5 15 14 5 20 18 5
plaintext: s p o r t i n g h i s c l o t h e s
numbers: 19 16 15 18 20 9 14 7 8 9 19 3 12 15 20 8 5 19
ciphertext: M H T L Y B H L L R E H A C Y B W X
numbers: 13 8 20 12 25 2 8 12 12 18 5 8 1 3 25 2 23 24

As you can see, the ciphertext numbers are merely the key numbers
plus the plaintext numbers modulo 26. This idea presages modern digital
stream ciphers, which we shall see in Chapter 5.

Poor Bellaso: his invention quickly became well known, but he him-
self never got recognition for it. Already in 1564, Bellaso himself was
writing that somebody was “sporting his clothes and divesting him of
his labors and honors.” That somebody seems to have been Giovanni
Battista Della Porta, who in 1563 published essentially the same system
that Bellaso did in 1553 without giving Bellaso any credit. Until very re-
cently, scholars of cryptography seem to have overlooked Bellaso’s 1553
book or confused it with his 1564 book and thus gave Della Porta credit
for the repeating-key cipher. Even worse, sometime in the nineteenth
century, the repeating-key tabula recta cipher got credited to Blaise de
Vigenère, whom we shall meet in Section 5.3. In 1586, Vigener̀e de-
scribed the tabula recta, the repeating-key cipher, and their combination
but never claimed to have invented any of them. Despite this, this sim-
plified version of Bellaso’s cipher is commonly known even today as the
Vigenère cipher, and the tabula recta is often called the Vigenère square.

2.5 how many is many? determining the number of alphabets

What the majority of the polyalphabetic ciphers we’ve discussed have
in common is a repeating key: there are only so many alphabets used by
the system, and eventually they repeat after a shorter or longer number
of letters. This number of letters is called the period of the cipher; in
Bellaso’s cipher, for example, this would just be the length of the key-
phrase. Before we see how to break a repeating-key system, we might
ask how to tell if we are dealing with a repeating-key cipher. Luckily,
we can use the same tool as we did for homophone ciphers, namely, the
index of coincidence. Consider our repeating-key tabula recta cipher
from before but with a rather shorter key:
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keyword: l e o n l e o n l e o n l e o

plaintext: t h e c a t o n t h e m a t b

ciphertext: F M T Q M Y D B F M T A M Y Q

keyword: n l e o n l e o n l

plaintext: a t t e d a g n a t

ciphertext: O F Y T R M L C O F

What would we expect the index of coincidence to be? We will pretend
for now that the key letters are chosen at random; when they make up
an English word or phrase, that will somewhat affect the calculations.

Suppose the period of the cipher is �. Then we can arrange the ci-
phertext letters into � columns, one for each letter of the key, and if
we have n letters total, then there are approximately n/� letters in each
column. For instance, in the preceding example, we would have

column: I II III IV

key letter: L E O N

ciphertext: F M T Q

M Y D B

F M T A

M Y Q O

F Y T R

M L C O

F

with n = 25 and � = 4. If we pick two letters from the same column,
they are enciphered the same way, so the probability that they are the
same should be approximately .038. On the other hand, if we pick two
letters from different columns, encrypted with two different randomly
chosen ciphers, then the chance that they are the same should be .066.
There are n ways to pick the first letter. If the second letter is in the
same column, there are (n/�− 1) ways to pick it and a chance of about
.038 that it is the same. If the second letter is in a different column, then
there are (n − n/�) ways to pick it and a chance of about .066 that it
is the same. There are n × (n − 1) total ways to pick two letters, so
the chance that they are the same—or the index of coincidence—should
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be about

n× (n/�− 1)× .038+ n× (n− n/�)× .066

n× (n− 1)

= n/�− 1

n− 1
× .038+ n− n/�

n− 1
× .066,

which some experimentation should convince you is, in fact, between
.038 and .066. If � = 1, then the cipher is monoalphabetic and the index
is .038, while if � = n then the index is .066; every plaintext letter has
been enciphered with a potentially different randomly chosen alphabet,
and the ciphertext is effectively random. In our example n = 25 and
� = 4, so we would expect the index to be about (5.25/24) × .038 +
(18.75/24) × .066, or about .060, although with such a short ciphertext,
it probably won’t be very close.

Once we know that we are dealing with a polyalphabetic cipher
with a repeating key, the first step in breaking it is to find the period.
As is often the case, especially in a subject so fraught with secrecy, the
most commonly useful technique for finding the period was invented
independently by two different people at roughly the same time—in this
case, the mid-nineteenth century. One was Charles Babbage, who dab-
bled in many aspects of science, mathematics, and engineering but is
best known today for coming up with the idea of the programmable
computer. Unfortunately, while Babbage intended to publish his work
on polyalphabetic ciphers, he never got around to it. The man who did
publish this method was Friedrich Kasiski. Unlike Babbage, Kasiski
does not seem to have made much of an impact outside of this one very
important contribution. He was a major in the Prussian army but does
not seem to have particularly engaged in cryptography during his ser-
vice. After retiring from active duty, he wrote a short book that generally
focuses on this particular technique.

So what is the technique, now generally known as the Kasiski test?
The central idea is that if the repetition of the key and a repetition in the
plaintext happen to line up, they will cause a repetition in the ciphertext.
Let’s consider again our previous example:
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keyword: l e o n l e o n l e o n l e o

plaintext: t h e c a t o n t h e m a t b

ciphertext: F M T Q M Y D B F M T A M Y Q

keyword: n l e o n l e o n l

plaintext: a t t e d a g n a t

ciphertext: O F Y T R M L C O F

The plaintext letters at repeat 4 times. The first 2 times happen to line up
in the same point of the key, but the third and fourth times don’t line up
with the first two. Thus the first 2 occurrences of at are both encrypted
to MY, although the third and fourth are encrypted to OF instead.

Now suppose Eve has only the ciphertext. The Kasiski examination
starts by looking for groups of letters that are repeated—in this case she
sees FMT, MY, and OF. Next she finds the number of letters between the
start of the first group of a repetition and the start of the second. In this
case, all 3 groups repeat 8 letters apart. From that Eve can conclude that
the period is a factor of 8. (Which it is—it’s 4.)

In longer ciphers the test is both more complicated and more
effective. Let’s look at an example ciphertext:

HXJVX DMTUX NUOGB USUHZ LFWXK FFJKX

KAGLB AFJGZ IKIXK ZUTMX YAOMA LNBGD

HZEHY OMWBG NZPMA PZHMH KAPGV LASMP

POFLA LTBWI LQQXW PZUHM OQCHH RTFKL

PEUXK DMTKX HPJGZ IGUBM OMEGH WUDMN

YQTHK JAOOX YEB
���
MB

��
VZTBG PFBGW DTBMB

ZFIXN ZQPYT IAPDM OAVZA AM
����
MBV LIJMA

VGUIB JFVKX ZASVH UHFKL HFJHG

Assuming this was enciphered with one of the systems we have seen
so far, Eve would probably first ask, Is this monoalphabetic or poly-
alphabetic? The ciphertext has an index of coincidence of 0.044, which
is squarely between 0.038 and 0.066. In addition, no ciphertext letter has
a frequency above 8%, and there are exactly 26 ciphertext letters used,
so this is either a rather unusual homophone cipher or a repeating-key
cipher. The underlined letters in the ciphertext above are the repetitions
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Eve finds in a Kasiski examination. There seem to be an awful lot of
repetitions of 2-letter groups, so Eve is going to ignore them for the
moment.

Eve makes a table of the repeated groups, their positions, and the
interval between the repetitions.

repetition first second interval

position position

DMT 6 126 120

JGZI 38 133 95

FKL 118 228 110

BMB 163 178 15

MBV 164 203 39

Other than 1, there isn’t any possible period that is a factor of all these
intervals. However, all except the last one have a factor of 5. In fact, 5
is the greatest common divisor of 120, 95, 110, and 15, so it is extremely
likely that the period of the cipher is 5. The last repetition, MBV, ap-
parently happened by pure chance rather than through the process we
described earlier.

If Eve isn’t satisfied with the results of her Kasiski examination,
there are a couple of other things she could try. One is to try to match
her observed index of coincidence with the formula we saw earlier:

.044 = 235/�− 1

234
× .038+ 235− 235/�

234
× .066.

Solving this for � gives

� = 235× .028

234× .044− 0.038× 235+ .066
≈ 4.6.

This certainly confirms the Kasiski value of 5. By itself, it could indicate
that the period is 4 or 5 or, if you had bad luck, maybe 3 or 6—I wouldn’t
rely on it by itself unless you had lots of ciphertext. On the other hand,
it can be very useful if you are not sure whether to include some of the
Kasiski repetitions—in this case it definitely indicates that you should
throw out the interval of 39, which would require the period to be 1.
Alternatively, you might suspect that the real key length is a factor of the
result of the Kasiski examination, as in the example on page 44. These
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two tests, in fact, work together very nicely—the Kasiski examination
might be off by a whole number factor, and the index of coincidence
gives you only the approximate size, but using both will usually pin
things down.

The last thing that Eve could try is the kappa test, which was Fried-
man’s original index of coincidence test. The kappa test checks to see
if two ciphertexts were encrypted using the same polyalphabetic ci-
pher, regardless of whether the key repeats. Consider two samples of
plaintext:

sample 1: h e r e i s e d w a r d b e a r c
sample 2: t h e p i g l e t l i v e d i n a

sample 1: o m i n g d o w n s t a i r s n o
sample 2: v e r y g r a n d h o u s e i n t

sample 1: w b u m p b u m p b u m p o n t
sample 2: h e m i d d l e o f a b e e c h

If you pick a position at random, what would you expect the chance
to be that the letter at that position in the first plaintext is the same
as the letter in that position in the second plaintext? Once, again, it’s
the chance that they are both “a” plus the chance that they are both
“b,” and so on, so if the plaintexts are made up of ordinary English
text, you would expect the chance to be about .066, as usual. So if there
are 50 letters in each sample, you would expect about .066 × 50 = 3.3
coincidences. (In fact, there are 3, as shown by the underlined letters.)

Now suppose we have two samples of randomly generated letters:

sample 1: u c z j t t c t k e t x q y h m x
sample 2: q h e a w y a o r l q e q e k w z

sample 1: v s t v s n e p k n u y q u o n a
sample 2: i e i e o j s u n v b q z q z w i

sample 1: i n p z o k t g p n o x b f m u
sample 2: h o t e d q f g e b e k a t i k

Now we expect the chance of a coincidence to be .038, so there should
be about .038× 50 = 1.9 coincidences; in fact, there are 2.

Now suppose we encrypt each plaintext from the first pair with the
tabula recta, using the same repeating key.
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keyword: c h r i s t o p h e r c h r i s t

sample 1: h e r e i s e d w a r d b e a r c

ciphertext 1: K M J N B M T T E F J G J W J K W

sample 2: t h e p i g l e t l i v e d i n a

ciphertext 2: W P W Y B A A U B Q A Y M V R G U

keyword: o p h e r c h r i s t o p h e r c

sample 1: o m i n g d o w n s t a i r s n o

ciphertext 1: D C Q S Y G W O W L N P Y Z X F R

sample 2: v e r y g r a n d h o u s e i n t

ciphertext 2: K U Z D Y U I F M A I J I M N F W

keyword: h r i s t o p h e r c h r i s t

sample 1: w b u m p b u m p b u m p o n t

ciphertext 1: E T D F J Q K U U T X U H X G N

sample 2: h e m i d d l e o f a b e e c h

ciphertext 2: P W V B X S B M T X D J W N V B

The same coincidences are still there. So if two English ciphertexts
are encrypted with the same key, we still expect the percentage of
coincidences to be about 6.6%.

On the other hand, if we encrypt the ciphertexts with different keys,
then there’s no particular reason the coincidences should be anything
other than random:

keyword 1: c h r i s t o p h e r c h r i s t

sample 1: h e r e i s e d w a r d b e a r c

ciphertext 1: K M J N B M T T E F J G J W J K W

keyword 2: e e y o r e e e y o r e e e y o r

sample 2: t h e p i g l e t l i v e d i n a

ciphertext 2: Y M D E A L Q J S A A A J I H C S
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keyword 1: o p h e r c h r i s t o p h e r c

sample 1: o m i n g d o w n s t a i r s n o

ciphertext 1: D C Q S Y G W O W L N P Y Z X F R

keyword 2: e e e y o r e e e y o r e e e y o

sample 2: v e r y g r a n d h o u s e i n t

ciphertext 2: A J W X V J F S I G D M X J N M I

keyword 1: h r i s t o p h e r c h r i s t

sample 1: w b u m p b u m p b u m p o n t

ciphertext 1: E T D F J Q K U U T X U H X G N

keyword 2: r e e e y o r e e e y o r e e y

sample 2: h e m i d d l e o f a b e e c h

ciphertext 2: Z J R N C S D J T K Z Q W J H M

And indeed, the percentage of coincidences is about 3.8%, as it would be
for two random samples of letters.

But how can Eve use this to determine the length of the key? Let’s
look at the example from page 44 yet another time, but this time also
slide the plaintext 4 steps to the right:

keyword 1: l e o n l e o n l e o n l e o

plaintext 1: t h e c a t o n t h e m a t b

ciphertext 1: F M T Q M Y D B F M T A M Y Q

keyword 2: l e o n l e o n l e o

plaintext 2: t h e c a t o n t h e

ciphertext 2: F M T Q M Y D B F M T

keyword 1: n l e o n l e o n l e o n l

plaintext 1: a t t e d a g n a t t h e c

ciphertext 1: O F Y T R M L C O F Y W S O

keyword 2: n l e o n l e o n l e o n l

plaintext 2: m a t b a t t e d a g n a t

ciphertext 2: A M Y Q O F Y T R M L C O F

We usually say the text is displaced rather than slid and refer to the dis-
placement of the lower text, since slide and shift have other common
meanings in cryptography. I’ve listed the two positions of the key as
two keywords on separate lines, but they are really the same. So the two
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Table 2.3.
Results of the kappa test for our ciphertext

Displacement Coincidences Index

1 7 .030
2 10 .043
3 9 .038
4 11 .047
5 14 .060
6 15 .064
7 15 .064
8 9 .038
9 11 .047
10 14 .060
11 10 .043
12 3 .013
13 14 .060
14 12 .051
15 17 .072

different positions of plaintext are effectively enciphered with the same
key and thus should obey the rule of having approximately 6.6% coin-
cidences. If I had displaced them by 3 steps instead—or 5—they would
have behaved like plaintexts encrypted with different keys and should
have had approximately 3.8% coincidences. On the other hand, if the
displacement was 8, or 12, the keys would have lined up again and the
index of coincidence should rise again.

So going back to our mystery ciphertext from page earlier, Eve can
try the kappa test with the ciphertexts displaced different amounts and
see what the percentage of coincidences are, as shown in Table 2.3.

Displacements of 6 and 7 both look promising, but they can’t both
be right, and 5 is not far behind. If 6 were the key length, then 12 should
have a large number of coincidences, so that’s definitely out. If 7 were
the key length, then 14 should have a large number of coincidences, and
it’s not bad but not great. On the other hand, if 5 were the key length,
then 10 and 15 should both have a large number of coincidences, and
15 is quite large. Like the Kasiski test, the kappa test has the possibility
of being off by a whole-number factor, so it makes sense to combine it
with the estimate of 4.6 we got from the index of coincidence formula.
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Once again, the two tests together strongly indicate that the period is 5.
The kappa test is a good choice if the Kasiski test doesn’t seem to be
working—maybe Alice has been careful to avoid repeated words in her
plaintext. She can’t avoid the index of coincidence, though!

2.6 superman is staying for dinner:
superimposition and reduction

To continue our example, now that Eve knows that the key repeats every
5 letters, what’s next? This means that she can separate the ciphertext
letters from page 46 into five different columns, each one using a differ-
ent key letter and, therefore, enciphered with a different alphabet, as in
Table 2.4.

Table 2.4.
Superimposition of the ciphertext (continued )

I II III IV V I II III IV V

H X J V X P E U X K
D M T U X D M T K X
N U O G B H P J G Z
U S U H Z I G U B M
L F W X K O M E G H
F F J K X W U D M N
K A G L B Y Q T H K
A F J G Z J A O O X
I K I X K Y E B M B
Z U T M X V Z T B G
Y A O M A P F B G W
L N B G D D T B M B
H Z E H Y Z F I X N
O M W B G Z Q P Y T
N Z P M A I A P D M
P Z H M H O A V Z A
K A P G V A M M B V
L A S M P L I J M A
P O F L A V G U I B
L T B W I J F V K X
L Q Q X W Z A S V H
P Z U H M U H F K L
O Q C H H H F J H G
R T F K L



Polyalphabetic Substitution • 53

Arranging the ciphertext like this is called superimposition of the
different rows. Each of these columns should have been monoalpha-
betically enciphered using the same cipher alphabet, which we could
confirm with the phi test; in fact, the corresponding indices are 0.054,
0.077, 0.057, 0.093, and 0.061, which is pretty good for the amount of
ciphertext we have.

Eve has now reduced the ciphertext to monoalphabetic terms.
If she has enough ciphertext, she can attack each column separately.
Suppose Eve knows that Alice and Bob are using our particular version
of the repeating-key cipher, where each key letter indicates a particular
additive cipher. Then all she has to do is identify the ciphertext letter
corresponding to e in each column. The most frequent letter in each
column is L for column I, A for column II, J for III, M for IV, and X
for V. Calculating the shifts on this basis gives key letters gvehs, and
decrypting using this key gives

abene wqome gyjyi nwpzg ejrpr yjece

debdi tjeyg bodpr syoee rejeh erwyk

adzzf hqrtn gdkeh idceo dekyc eenew

isadh exwop eulpd idpzt huxzo kxacs

iippr wqoce ateyg bkptt hqzyo pyyeu

ruozr cejge riwei odotn ijwyd wxwei

sjdpu sukqa bekvt heqrh tqhtc emeeh

okpai cjqce senno nlacs ajezn

Obviously that’s not the correct plaintext. Eve could start systemat-
ically switching some of the columns to the second-most-frequent letter
until it starts to look right, but there are some more clever things she
could try. It should be clear that when each column is correctly deci-
phered, it is more likely to have high-frequency plaintext letters in it
than low-frequency—after all, that’s what high frequency means. Fried-
man pointed out that one way to measure frequency would be to add
up the frequencies of the letters in each column. The columns with the
highest sums are most likely to be right. The numbers we arrive at for
each column are approximately 2.9, 1.9, 2.1, 2.4, and 3.1. So, the first and
fifth columns are most likely to be correct. Added evidence comes from
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Table 2.5.
Sums of the letter frequencies for each
possible key applied to our ciphertext

Key Letter Frequency Sum

a 2.2
b 1.7
c 1.2
d 1.5
e 1.9
f 1.8
g 1.9
h 2.2
i 1.6
j 1.0
k 1.6
l 3.3
m 2.0
n 1.6
o 1.4
p 1.6
q 1.5
r 2.1
s 2.1
t 1.6
u 1.7
v 2.0
w 2.0
x 1.8
y 1.8
z 2.0

the fact that among the low-frequency letters, all the instances of q, x,
and z that we see are in the middle three columns.

Eve could now try some other options for these columns, but since
the number of letters in each column is a little small, it could take her
three or four tries by trying to match high-frequency letters in each
column. If she suspected that the columns were encrypted with affine
ciphers and required two pairs of matching letters in each column to
solve, she would probably want to continue in that direction. However,
since she knows that the columns are encrypted with additive ciphers,



Polyalphabetic Substitution • 55

it’s not that hard to just do a brute-force search with each possible key
and see which ones give us the highest-frequency plaintexts. Even be-
fore computers, this was considered quite feasible, and with a modern
computer, it’s a snap. Table 2.5 shows the sums of the frequencies for
each possible key.

Eve sees that key letter l gives far and away the highest sum, so
that’s probably the second key letter. Proceeding in this way gives all
five key letters as glass, which makes her feel a lot better since she
was wondering just what a gvehs was, anyway. Of course, the proof of
the pudding is in the decrypting—try it and see if your answer makes
sense!

2.7 products of polyalphabetic ciphers

Can we improve the security of a repeating-key polyalphabetic cipher
by reencrypting using a second key? Based on Section 1.4, you are prob-
ably guessing not. Suppose after Alice encrypts her message with the
keyword glass, she decides to encrypt again with the keyword queen.

keyword: g l a s s g l a s s g l a s s g l a s

plaintext: a l i c e w a s b e g i n n i n g t o

first ciphertext: H X J V X D M T U X N U O G B U S U H

keyword: q u e e n q u e e n q u e e n q u e e

first ciphertext: h x j v x d m t u x n u o g b u s u h

second ciphertext: Y S O A L U H Y Z L E P T L P L N Z M

This is still an encryption using a repeating-key polyalphabetic
cipher with a length of 5, and it can still be attacked by converting it to
5 monoalphabetic ciphers using the techniques of Sections 2.5 and 2.6.
Then it’s just a question of what type of monoalphabetic ciphers we
have been using. If they are both additive, like in the repeating-key tab-
ula recta cipher we used in the example, then the result will be additive.
In our example, encrypting once with the keyword glass and again
with the keyword queen is the same as encrypting once total with the
keyword obtained like this:
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keyword 1: g l a s s

numbers: 7 12 1 19 19

keyword 2: q u e e n

numbers: 17 21 5 5 14

sum (modulo 26): 24 7 6 24 7

final keyword: x g f x g

If the monoalphabetic ciphers are both multiplicative, or affine, the re-
sult will be multiplicative, or affine. So the only extra security in the
product of 2 repeating-key ciphers with the same key length is the
small amount that comes from having a harder-to-guess keyword (like
xgfxg). That probably isn’t worth the extra trouble.

What if you take the product of 2 repeating-key ciphers with differ-
ent key lengths? Maybe this time, Alice first encrypts with the keyword
rabbit and then reencrypts with the keyword curiouser:

keyword 1: r a b b i t r a b b i t r a b b i t r

plaintext: a l i c e w a s b e g i n n i n g t o

first ciphertext: S M K E N Q S T D G P C F O K P P N G

keyword 2: c u r i o u s e r c u r i o u s e r c

first ciphertext: s m k e n q s t d g p c f o k p p n g

second ciphertext: V H C N C L L Y V J K U O D F I U F J

This is still a repeating-key cipher, but how often does it repeat? It
repeats only when the two keywords both end in the same place, and
you can see by looking at the example that that will happen every 18
letters. The reason for this is that 18 is the least common multiple, or
LCM, of 6 and 9. The LCM and the GCD are related by a very nice
formula:

LCM(a, b) = a× b

GCD(a, b)
.

In our example,

LCM(6, 9) = 6× 9

GCD(6, 9)
= 54

3
= 18.



Polyalphabetic Substitution • 57

So if you know the GCD of two numbers, say, from using the Euclidean
algorithm, it’s very easy to figure out their LCM.

And since the ciphers are additive, once again we can figure out
what the equivalent 18-letter keyword would be.

keyword 1: r a b b i t r a b

numbers: 18 1 2 2 9 20 18 1 2

keyword 2: c u r i o u s e r

numbers: 3 21 18 9 15 21 19 5 18

sum (modulo 26): 21 22 20 11 24 15 11 6 20

final keyword: u v t k x o k f t

keyword 1: b i t r a b b i t

numbers: 2 9 20 18 1 2 2 9 20

keyword 2: c u r i o u s e r

numbers: 3 21 18 9 15 21 19 5 18

sum (modulo 26): 5 4 12 1 16 23 21 14 12

final keyword: e d l a p w u n l

So, we have made some progress in the security of our cipher. As long
as Eve doesn’t guess what Alice did, Alice has achieved the security of
an 18-letter keyword using only 15 letters from a 6-letter word and a
9-letter word. In fact, we could have done even a little better—we could
achieve an 18-letter repeat using only a 2-letter word and a 9-letter word,
since 18 is also the LCM of 2 and 9:

LCM(2, 9) = 2× 9

GCD(2, 9)
= 18

1
= 18.

Repeating-key encryption was rediscovered several times between
the sixteenth and nineteenth centuries, and product ciphers with 2 key-
words of 2 different lengths probably were too. In particular, in 1854
a nineteenth-century hopeful named John Hall Brock Thwaites pub-
licly challenged Charles Babbage to break a cipher that turned out to
be a repeating-key tabular recta encryption using the keywords two
and combined. Babbage succeeded in breaking the cipher with the help
of his youngest son. Although he did not publish a full account of his
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methods, apparently he used the principles of modular arithmetic,
which would make him the first person to do so.

2.8 pinwheel machines and rotor machines

The history of machines used to perform or aid in encryption is a long
one, stretching back perhaps to the ancient Greek scytale, which we will
meet in Section 3.1. It continues through Leon Alberti and Lester Hill up
to the present day. Along the way, luminaries appear, such as Thomas
Jefferson, third president of the United States, and Sir Charles Wheat-
stone, the British scientist, engineer, and inventor best known now for
his contribution to the Wheatstone bridge used for measuring electri-
cal resistance. The heyday of cipher machines was the mid–twentieth
century from around the end of World War I to the development of
modern computers. Hill dates from this period, but as we saw, his
ideas did not get much practical use. Much more important were two
other types of machines, which, like Hill’s, used gears to drive their
encryption.

The type that is most similar to the ciphers we have looked at so
far is the one that was invented later. These are the pinwheelmachines,
which use a large number of gears turning more or less independently.
Each gear has irregularly spaced pins on it (hence the name pinwheel),
which produce through mechanical or electrical means the equivalent
of a repeating-key polyalphabetic substitution. The period of each pin-
wheel is different and the set is designed to give a very large combined
period.

The first pinwheel device seems to have been invented by Boris
Caesar Wilhelm Hagelin, a Swedish engineer and employee of
Emanuel Nobel, nephew of the Nobel prize originator. In 1922 Hagelin
was assigned to look after the Nobel interests in the Swedish firm
Aktiebolaget Cryptograph, and in 1925 he invented the first of a very
successful line of pinwheel-based cipher machines, the B-21. Other well-
known models in this line were the C-36, used by the French Army
before and during World War II, the M-209, used by the US Armed
Forces for tactical purposes during World War II on a huge scale and
continuing through the Korean War, and the C-52/CX-52, used by more
than 60 countries during the Cold War.
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Figure 2.3. The C-36.
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Figure 2.4. Left: Pin and guide arm in inactive position. Right: Pin and guide arm in
active position.

The C-36 (Figure 2.3) is a good example of the series. There are
five pinwheels, with 25, 23, 21, 19, and 17 pins, respectively. Note that
the greatest common divisor of each pair of these numbers is 1, so the
combined period is 25×23×21×19×17 = 3,900,225. Each pin can stick
out to the right of the wheel, in which case it is “active,” or to the left
(“inactive”). See Figure 2.4. One position on each wheel (the “basic pin”)
controls a flat rod, or “guide arm,” which is also pushed into an active or
inactive position. There is also a “cage” containing 25 bars arranged in a
rotating horizontal cylinder. Each bar has a lug in one of seven places;
the positions were fixed in the original C-36 but movable in the revised



60 • Chapter 2

Figure 2.5. Left: Inactive guide arm. Right: Active guide arm engaging lug.

C-362. Five of the places correspond to the pinwheels, while the other
two are inactive.

To encrypt a letter, the plaintext is set on an indicating disk and a
handle is pushed, causing the cage to be rotated. Active lugs on the bars
engage active guide arms, causing the corresponding bar to stick out to
the left. See Figure 2.5. Each bar thus activated causes the final ciphertext
wheel to turn one place. This results in a final ciphertext letter of

C ≡ 1+ (ax1 + bx2 + cx3 + dx4 + ex5)− P modulo 26,

where xi is the number of bars whose lugs are in the position of the ith
pinwheel and a, b, c, d, and e are 0 or 1, depending on whether the basic
pin for that letter is active or not.

After the ciphertext letter is printed, each pinwheel rotates one pin
forward and the guide arms and bars reset for the next letter. Taking
the rotation of the pinwheels into account, the nth letter is encrypted
according to the substitution

Cn ≡ 1+ (anx1 + bnx2 + cnx3 + dnx4 + enx5)− Pn modulo 26,

where xi is as before. Now an is 0 or 1, depending on whether the pin
corresponding to n modulo 17 is set to the active position on the first
pinwheel, bn depends on whether the pin corresponding to n modulo
19 is active on the second pinwheel, and so on. You can see that this is
equivalent to a repeating-key substitution with a period of 17 and the
“keyword”
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Table 2.6.
Sample lug and pin settings

Pin Settings
Bar Lug Position Pin Number Wheel: 1 2 3 4 5

1 1 1 0 1 0 0 1
2 2 2 0 1 0 1 1
3 2 3 0 0 1 0 0
4 3 4 1 0 0 1 1
5 3 5 0 0 1 1 0
6 3 6 1 0 1 0 0
7 4 7 1 1 0 0 0
8 4 8 1 1 1 1 1
9 4 9 0 0 1 1 1
10 4 10 1 1 0 0 1
11 4 11 1 0 0 0 0
12 4 12 1 1 0 0 0
13 4 13 0 1 1 1 1
14 5 14 0 1 1 1 0
15 5 15 1 0 0 0 1
16 5 16 0 0 1 1 0
17 5 17 1 0 0 0 1
18 5 18 0 1 0 0
19 5 19 1 1 1 1
20 5 20 0 1 1
21 5 21 1 1 1
22 5 22 1 0
23 5 23 1 1
24 5 24 1
25 5 25 0

a1x1, a2x1, a3x1, . . . , a17x1,

followed by one with a period of 19 and the keyword:

b1x2, b2x2, b3x2, . . . , b17x2, b18x2, b19x2,

and so on.
For example, consider the lug and pin settings shown in Table

2.6. These produce the keywords (read vertically) and final ciphertext
numbers shown in Table 2.7.
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Table 2.7.
Keywords and final ciphertext produced by the lug and pin settings

Total Ciphertext
Position ax1 bx2 cx3 dx4 ex5 Active Bars (modulo 26)

1 0 2 0 0 12 14 15− P1
2 0 2 0 7 12 21 22− P2
3 0 0 3 0 0 3 4− P3
4 1 0 0 7 12 20 21− P4
5 0 0 3 7 0 10 11− P5
6 1 0 3 0 0 4 5− P6
7 1 2 0 0 0 3 4− P7
8 1 2 3 7 12 25 26− P8
9 0 0 3 7 12 22 23− P9
10 1 2 0 0 12 15 16− P10
11 1 0 0 0 0 1 2− P11
12 1 2 0 0 0 3 4− P12
13 0 2 3 7 12 24 25− P13
14 0 2 3 7 0 12 13− P14
15 1 0 0 0 12 13 14− P15
16 0 0 3 7 0 10 11− P16
17 1 0 0 0 12 13 14− P17
18 0 2 0 0 12 14 15− P18
19 1 2 3 7 12 25 26− P19
20 0 2 3 0 0 5 6− P20
21 1 2 3 7 12 25 26− P21
22 1 0 0 0 0 1 2− P22
23 1 2 0 7 0 10 11− P23
24 1 2 3 7 0 13 14− P24
25 0 2 0 0 12 14 15− P25

So a sample encryption using these settings might look like the
following:

key numbers: 15 22 4 21 11 5 4 26 23 16 2 4
plaintext: b o r k b o r k b o r k

plaintext numbers: 2 15 18 11 2 15 18 11 2 15 18 11
key minus plaintext: 13 7 12 10 9 16 12 15 21 1 10 19

ciphertext: M G L J I P L O U A J S

The key settings on the C-36 include the selection of active pins on the
pinwheels, the lug positions (for models with movable lugs), and the
starting position of the wheels at the beginning of the encipherment.

The more widely used M-209 had several improvements, including
6 pinwheels instead of 5, for a total period of 26×25×23×21×19×17 =
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101,405,850, and 27 bars instead of 25. In addition, each bar had 2 lugs
instead of 1, which could be set to the positions of any 0, 1, or 2 pin-
wheels. If both lugs on the same bar engaged active pins, however,
the action was the same as if only one was engaged. This makes the
enciphering equation somewhat more complicated. Most well-known
pinwheel machines outside the Hagelin series were teletypewriter ma-
chines related to those we will encounter in Section 4.6. These included
most of the German World War II ciphers that the British called Fish,
such as the Lorenz SZ 40 and SZ 42 and the Siemens and Halske T52
Geheimschreiber.

Since the Hagelin cipher machines basically perform multiple
polyalphabetic repeating-key encryption, the cryptanalysis methods
from Section 2.7 are also relevant here. Other helpful techniques re-
sult from the extremely long period and the fact that each keyword has
only two different letters. For each ciphertext position, each of the 5
basic pins is either active or inactive, so there are 25 = 32 different posi-
tions. If we focus on one of the wheels, say, wheel 1, then the positions
where that pin is active will be encrypted with one of 24 = 16 alpha-
bets, possibly not all different. The positions where that pin is inactive
will be encrypted with one of a different set of 24 = 16 alphabets. This
pattern will repeat every 25 letters as wheel 1 turns. So, if we super-
impose rows of 25 letters of ciphertext, the columns will fall into two
different groups, which we can often distinguish statistically. Further-
more, once the two groups are distinguished, the two corresponding
letter frequency patterns should be shifted by exactly x1, the number
of bars whose lugs are in the position of the first wheel. Proceeding in
this way, we can determine the pin and lug settings for each wheel. A
known-plaintext attack on the Hagelin machines is also worth consider-
ing, since it might be fairly common to find several messages using the
same pin and lug settings but different wheel starting positions. Given
the plaintext and ciphertext at position n of the message we can easily
recover the corresponding key number using the equation

Cn ≡ kn − Pn modulo 26.

Due to the extremely long period, we will probably need to recover the
pin and lug settings in order to decipher messages with other wheel
starting positions. In this situation we can superimpose the key num-
bers rather than the actual ciphertext. Now the columns with active
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basic pins will have larger key numbers compared to the columns with
inactive basic pins, and we can proceed more or less as in the ciphertext-
only case.

Another type of geared cipher machine developed in the twentieth
century uses a set of disks called rotors. Rotor machines seem to have
been invented independently at least three and possibly as many as five
times during the early twentieth century—it is still not entirely clear
which inventors truly worked independently and which borrowed the
idea from others—or perhaps stole it outright. Recent research suggests
that the first priority should go to two first sea lieutenants in the Dutch
Navy, Theo A. van Hengel and R.P.C. Spengler, who were posted in
the Dutch East Indies during World War I. Unfortunately for the two
lieutenants, the Dutch Navy seems to have held up their patent appli-
cation for reasons that are now unclear. Before the matter was settled,
van Hengel and Spengler were scooped by four others: Edward Hugh
Hebern, who started work on a rotor machine in the United States in
1917 and filed a patent in 1921, Arthur Scherbius, who filed a patent
in Germany in 1918, Hugo Alexander Koch, who filed a patent in the
Netherlands in 1919, and Arvid Gerhard Damm, who filed in Sweden,
also in 1919. There is some evidence that Koch had access to an early
draft of van Hengel and Spengler’s patent application, and he may have
shared it with Scherbius, with whom he later had a close business rela-
tionship. Hebern, Damm, and perhaps Scherbius appear to have come
up with their inventions independently of the Dutch inventors.

The idea of a rotor is that it performs a monoalphabetic substitution
electrically, by means of wires. Each side of the disk has one contact
for each letter of the alphabet, and a complicated set of wires connects
each contact on the left side with one contact on the right, as shown in
Figure 2.6. So far this is just an electrical version of Alberti’s cipher disk.
The difference is in the behavior when the rotor is rotated.

Suppose, for instance, that the rotor is wired to perform a multi-
plicative cipher with a key of 3. Then we have a table:

plaintext: a b c d e f g h i j · · · y z

numbers: 1 2 3 4 5 6 7 8 9 10 · · · 25 26

times 3: 3 6 9 12 15 18 21 24 1 4 · · · 23 26

ciphertext: C F I L O R U X A D · · · W Z
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Figure 2.6. A rotor taken apart to show its wiring.

We also have a formula,

C ≡ 3P modulo 26,

and a schematic diagram, shown in Figure 2.7. Now suppose we rotate
the rotor one place, as in Figure 2.8. Note that the plaintext and cipher-
text letters don’t move—only the wires do. We can think of this as doing
a shift, then a multiplication, and then a shift back. The shift back is
what makes this different from Alberti’s disk.

plaintext: a b c d e f g h i · · · x y z

numbers: 1 2 3 4 5 6 7 8 9 · · · 24 25 26

shifted plaintext: b c d e f g h i j · · · y z a

numbers plus 1: 2 3 4 5 6 7 8 9 10 · · · 25 26 1

times 3: 6 9 12 15 18 21 24 1 4 · · · 23 26 3

shifted ciphertext: F I L O R U X A D · · · W Z C

minus 1: 5 8 11 15 17 21 23 26 3 · · · 22 25 2

final ciphertext: E H K N Q T W Z C · · · V Y B

Following this through gives the formula

C ≡ 3(P+ 1)− 1 modulo 26.

In general, when the rotor is rotated k places, the formula will be

C ≡ 3(P+ k)− k modulo 26.
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Figure 2.7. A rotor, schematically.

That’s kind of interesting but hardly earth shattering. Even when we
hook the rotor up to a mechanism so that it rotates automatically one
place for each plaintext letter, we really just get a version of Trithemius’
progressive cipher. It’s a little better than Trithemius’ system because
the rotor wiring gives us a key, but the fact that the rotor comes back to
the beginning every 26 letters (i.e., the period is 26) makes it pretty easy
to attack.

It gets really interesting when we add another rotor that turns at a
different rate. There are several ways to arrange this, but the most com-
mon is probably to make the second rotor turn one position whenever
the first rotor finishes a complete rotation. In our example, the second
rotor will move once every 26 letters.
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Figure 2.8. The same rotor, rotated one place.

The second rotor does an additional substitution, as shown in
Figure 2.9. If, for instance, it’s wired to perform a multiplicative cipher
with a key of 5, then for the first 26 letters the final substitution will be

C ≡ 5(3(P+ k)− k) modulo 26,

as shown, for example, in Figures 2.9 and 2.10. For the second 26 letters,
the final substitution will be

C ≡ 5((3(P+ k)− k)+ 1)− 1 modulo 26,

as shown, for example, in Figures 2.11 and 2.12. Mathematicians use the
symbol �x� to mean round x down to the nearest whole number. In this
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Figure 2.9. Two rotors.

notation, at the kth letter the second rotor has turned �k/26� places, and
the substitution will be

C ≡ 5((3(P+ k)− k)+ �k/26�)− �k/26� modulo 26.

With two rotors, it will be 262 = 676 letters before both rotors come
back to the beginning, so the period will be 676. This is a much more
secure cipher than one rotor. A third rotor could be added, which turns
one position every time the second rotor makes a full rotation. Then at
the kth letter the first rotor will have turned k places, the second rotor
will have turned �k/26� places, and the third rotor will have turned⌊
k/262

⌋
places. As we add more rotors, the period gets longer and the

substitution equations get more complicated—with s rotors the period is
26s and the equations are nested s levels deep.
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Figure 2.10. The same two rotors with the first one rotated, ready to encrypt the second
letter.

Nevertheless it is possible to break a rotor system. The earliest
successful techniques for doing so were worked out by Allied crypt-
analysts before and during World War II, notably at the Polish Cipher
Bureau before the invasion of Poland and later at Bletchley Park, the
location of the Government Code and Cypher School in Great Britain.
The Poles discovered that the German military had adopted a cipher
machine known as the Enigma. This was a modified version of the
rotor system invented by Scherbius and sold commercially by his firm.
The basic military version had three rotors, which could be inserted
in any order. There was also a reflector rotor at the far end of the three,
which made yet another substitution and then sent the electrical current
back through the first three rotors, giving a total of 7 substitutions. The
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Figure 2.11. The same two rotors with the second one rotated, ready to encrypt the
twenty-sixth letter.

reflector also made the cipher reciprocal. Finally, there was a plugboard
between the keyboard and the rotors, which added yet another substi-
tution. (See Figure 2.13 for the complete system.) The key settings for
the Enigma included the order of the rotors, the initial position of each
rotor, the position on each rotor that would cause the next rotor to turn,
and the settings of the plugboard.

The first step in breaking a rotor system is to figure out how the
rotors are wired. Early efforts took advantage of peculiarities of the en-
ciphered key indicators used by the Germans to specify the starting rotor
positions, mistakes made by the Enigma operators, and information se-
cretly bought from a German source. Later, captured machines, rotors,
and instructions also played a part in determining rotor wirings. Once
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Figure 2.12. The same two rotors with both rotated, ready to encrypt the twenty-seventh
letter.

the rotor wirings were figured out, determining the key settings was
basically a matter of using enciphered indicators and probable words to
rule out some settings as being impossible and mounting a brute-force
attack on the rest. A more modern type of attack on the wiring and
key settings of a rotor system uses a known-plaintext attack and the fact
that we can select sets of letters whose encryption settings are all the
same, with the exception of the position of a given rotor.

Of the six people involved in the development of the rotor machine
that we mentioned previously, none really managed to profit from sales
of the invention. Van Hengel and Spengler challenged Koch’s patent
until 1923, when their final appeal was denied. Rather suspiciously,
the chair of the committee of appeal was the same man who was
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Figure 2.13. The Wiring of the Enigma.

minister of the navy when their initial request to apply for a patent
was delayed. Hebern formed a company to market his machines and in
the late 1920s and early 1930s succeeded in selling a small number to
the US Navy. Government cryptographers who had seen Hebern’s ma-
chine then proceeded to develop a more secure version of their own, the
widely used SIGABA. Hebern was not compensated for his contribu-
tion. His lawsuits were settled by his estate in 1958 for a small fraction
of what he probably deserved. Koch never built a machine based on his
design; he eventually sold his patent rights to Scherbius and died before
seeing the Enigma become a success. Scherbius himself set up a com-
pany that sold a few Enigmas commercially and a few to the German
armed forces, but he also died before Hitler’s vast expansion of the Ger-
man military created the enormous demand for the Enigma that would
eventually occur.
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And Arvid Damm also formed a company and also died before
it became a success. This company was in fact the same Aktiebolaget
Cryptograph which was later taken over by Boris Hagelin. Hagelin gave
up on rotor machines and switched to the pinwheel machines we saw
above. He and his firm then made millions of dollars from commercial
machines sold both before and after World War II, machines sold to
the French military before the German invasion—and, of course, the US
military’s M-209.

2.9 looking forward

I said at the end of Chapter 1 that in Chapter 5 we will divide mod-
ern ciphers into two types, block ciphers and stream ciphers, and that
a block cipher can be thought of as a type of polygraphic cipher. Simi-
larly, it’s not too much of a stretch to say that a stream cipher is a kind
of polyalphabetic cipher. In fact, the autokey ciphers, which were the
earliest ciphers that could be called stream ciphers, were developed at
the same time as the polygraphic ciphers discussed in this chapter and
by the same people. The ciphers in this chapter mostly have keys that
repeat after a short or long period. We will see that the goal of modern
stream ciphers is to have an extremely long period or, preferably, no
repetition at all. And like modern block ciphers, modern stream ciphers
act on an “alphabet” of 0 and 1 instead of the letters humans use for
writing.

As for the particular ciphers in this chapter, homophonic ciphers are
interesting because they are an early form of probabilistic encryption,
where the same plaintext and key might result in different ciphertexts,
depending on some random factor. We will see another example of this
in Chapter 8. I’ve introduced Alberti ciphers largely as a link between
homophonic ciphers and tabula recta ciphers. Changing the alphabet
every letter is just more secure than changing it at random intervals.

Progressive systems are also mainly important as a precursor of
repeating-key tabula recta ciphers. Pinwheel machines and rotor ma-
chines are simply repeating-key ciphers with extremely long periods
and were generally considered state of the art in cipher security until
the development of modern electronics in the middle of the twenti-
eth century. Even then, the earliest electronic cipher devices were still
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basically attempts to produce very long repeating keys and combine
them with an alphabet of 0s and 1s.

As far as cryptanalysis is concerned, the most important idea in this
section is almost certainly the index of coincidence. The phi test and the
kappa test act on letters of the alphabet and their frequencies and there-
fore can’t be directly applied to modern ciphers. However, the index
of coincidence is vitally important as one of the earliest uses in crypt-
analysis of the idea of correlation. To use correlation, the cryptanalyst
performs a statistical comparison of two different sets of frequencies or
of one set of frequencies to an altered version of itself. The goal is to try
to find patterns that give information about the encryption process. In
Chapter 5, I will mention an attack where the frequency distribution of
an intermediate value in the cipher is compared to the ciphertext values
in order to get information about the key. This is what is specifically
known to cryptanalysts as a correlation attack. The idea of correlation
is used in other areas as well. For instance, the keystream produced
by a stream cipher should pass certain randomness tests in order to
be difficult to cryptanalyze. One of the tests is that the autocorrela-
tion, or correlation between the keystream and shifted version of itself,
should be as small as possible. Other versions of the same idea involve
comparing plaintext frequencies to ciphertext frequencies or different ci-
phertext frequencies to each other. Finding patterns in these frequency
comparisons is one of the important tools used to attack modern ciphers.

The Kasiski test is less commonly used against modern stream
ciphers, since, as I said, the goal is to have little or no repetition. Some-
times the period turns out not to be as long as it should be, though. Or
maybe a large fraction of the key repeats even though the whole key
doesn’t. In that case the Kasiski test works just as well against modern
ciphers as against tabula recta ciphers. For similar reasons, the version
of superimposition with reduction to monoalphabets used in this chap-
ter is going to be used pretty rarely against modern ciphers. We will see
other versions of superimposition in Chapter 5, however, and those will
be powerful tools against stream ciphers, especially when the ciphers
are not used properly. Sadly, this still happens on a regular basis.



3
Transposition Ciphers

3.1 this is sparta! the scytale

All the ciphers we have looked at so far are substitution ciphers; one
letter or group of letters is substituted for another. Now we are going to
look at a different idea—instead of changing letters, we are “just” going
to move them around.

Like the substitution cipher, this idea goes back at least to clas-
sical times. The first recorded instance may be the scytale. (Scytale
rhymes with Italy, although it’s Greek, not Italian. The c is usually not
pronounced in English, although “skytalē” would be a more accurate
transliteration of the ancient Greek word.) This cipher device was sup-
posedly used by the ancient Spartans at least as far back as the Spartan
general Lysander, although there is some question whether the whole
idea was made up at a later date.

Scytale literally means staff, or stick, and the first description of how
such a thing might have been used as a cryptographic device comes from
the Roman historian Plutarch, several centuries after Lysander:

The dispatch-scroll is of the following character. When the ephors [the

city council of Sparta, more or less] send out an admiral or a general,

they make two round pieces of wood exactly alike in length and thick-

ness, so that each corresponds to the other in its dimensions, and keep

one themselves, while they give the other to their envoy. These pieces of

wood they call “scytalae.” Whenever, then, they wish to send some secret

and important message, they make a scroll of parchment long and nar-

row, like a leathern strap, and wind it round their “scytale,” leaving no

vacant space thereon, but covering its surface all round with the parch-

ment. After doing this, they write what they wish on the parchment,
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Figure 3.1. A scytale.

just as it lies wrapped about the “scytale”; and when they have writ-

ten their message, they take the parchment off, and send it, without the

piece of wood, to the commander. He, when he has received it, cannot

other[wise] get any meaning of it,—since the letters have no connection,

but are disarranged,—unless he takes his own “scytale” and winds the

strip of parchment about it, so that, when its spiral course is restored per-

fectly, and that which follows is joined to that which precedes, he reads

around the staff, and so discovers the continuity of the message. And the

parchment, like the staff, is called “scytale,” as the thing measured bears

the name of the measure.

This is really best described by a picture, such as Figure 3.1.
Alice and Bob can accomplish more or less the same thing without

using a stick of wood, of course. Suppose the stick is just large enough
around to fit 3 letters and just long enough to fit 11 turns of the strip of
paper. Then Alice essentially has a 3×11 grid in which she writes the
plaintext letters. If the message doesn’t fill the grid, Alice can use nulls
for the remaining spaces.

→ g o t e l l t h e s p →
→ a r t a n s t h o u w →
→ h o p a s s e s t b y →

Note that if Alice were writing on an actual scytale, each column
would be a different turn of the paper. Then, reading down the columns
instead of across, or unwinding the paper, she gets the ciphertext
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↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
g o t e l l t h e s p

a r t a n s t h o u w

h o p a s s e s t b y

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

or

GAHOR OTTPE AALNS LSSTT EHHSE OTSUB PWYAZ

When the scytale cipher is done using a rectangle like this, it’s usually
called columnar transposition. It’s traditional to arbitrarily divide the
ciphertext into five-letter blocks, like we did in Section 2.2. The last
block is padded with nulls in order to disguise the true length of the
message. As we will see in a few paragraphs, it should not be obvious to
Eve which letters are nulls.

Does this cipher have a key? According to Plutarch, we need “two
round pieces of wood exactly alike in length and thickness,” one for
Alice and one for Bob. As far as we can tell, it’s not so much the length
as the thickness that really needs to match. If Eve tries to decrypt the
ciphertext using a stick that is, say, four letters around instead of three,
then when she winds up the paper she gets

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
G R P L S E E U Y

A O E N S H O B A

H T A S T H T P Z

O T A L T S S W

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

In other words, the ciphertext is written down the columns and read
across the rows. You can see this doesn’t make any sense when Eve
reads it across.

On the other hand, when Bob decrypts the ciphertext using the cor-
rect stick or the correct grid, he writes the ciphertext down the columns
and gets
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↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
G O T E L L T H E S P A

A R T A N S T H O U W Z

H O P A S S E S T B Y

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Since the last column is only a partial column, he knows it must be nulls.
He throws it away and then reads the plaintext across the rows without
difficulty.

So, the key to the scytale is the circumference of the stick, or equiv-
alently, the number of rows in the grid—in this case, 3. Note that if
Alice had not padded the message with nulls, the key would have been
fairly easy for Eve to guess. She would know that the 33 letters in the
ciphertext completely filled a rectangular grid, so there are only four
possibilities: 1× 33, 3× 11, 11× 3, and 33× 1. The first and last of these
are trivial, so that makes it pretty easy for Eve.

3.2 rails and routes: geometric transposition ciphers

Of course, once you have thought of the idea of writing your message
in the rows of a rectangle, there are lots of other things you can do
besides just reading off the columns. Colonel Parker Hitt, the author
of a US Army manual on cryptography during World War I, listed the
following methods of reading the message out of the rectangle, noting
that each one can be started at any of the four corners: simple horizon-
tal (this includes the trivial cipher if you start at the upper left), simple
vertical (this includes the scytale if you start at the upper left), alternate
horizontal (alternating left to right and right to left), alternate vertical,
simple diagonal, alternate diagonal, spiral clockwise, and spiral counter-
clockwise. These methods are shown in Figure 3.2, which is taken from
Hitt’s manual.

In addition to transpositions based on rectangles, Friedman’s 1941
manual adds ciphers based on trapezoids, triangles, crosses, and zigzags.
You might have come across some of these yourself, including the rail
fence cipher, in which the message is written on two (or sometimes
more) lines in a zigzag and read off by rows.
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(a) Simple horizontal:
ABCDEF FEDCBA STUVWX XWVUTS
GHIJKL LKJIHG MNOPQR RQPONM
MNOPQR RQPONM GHIJKL LKJIHG
STUVWX XWVUTS ABCDEF FEDCBA

(b) Simple vertical:
AEIMQU DHLPTX UQMIEA XTPLHD
BFJNRV CGKOSW VRNJFB WSOKGC
CGKOSW BFJNRV WSOKGC VRNJFB
DHLPTX AEIMQU XTPLHD UQMIEA

(c) Alternate horizontal:
ABCDEF FEDCBA XWVUTS STUVWX
LKJIHG GHIJKL MNOPQR RQPONM
MNOPQR RQPONM LKJIHG GHIJKL
XWVUTS STUVWX ABCDEF FEDCBA

(d) Alternate vertical:
AHIPQX DELMTU XQPIHA UTMLED
BGJORW CFKNSV WROJGB VSNKFC
CFKNSV BGJORW VSNKFC WROJGB
DELMTU AHIPQX UTMLED XQPIHA

(e) Simple diagonal:
ABDGKO GKOSVX OKGDBA XVSOKG
CEHLPS DHLPTW SPLHEC WTPLHD
FIMQTV BEIMQU VTQMIF UQMIEB
JNRUWX ACFJNR XWURNJ RNJFCA

ACFJNR JNRUWX RNJFCA XWURNJ
BEIMQU FIMQTV UQMIEB VTQMIF
DHLPTW CEHLPS WTPLHD SPLHEC
GKOSVX ABDGKO XVSOKG OKGDBA

(f) Alternate diagonal:
ABFGNO GNOUVX ONGFBA XVUONG
CEHMPU FHMPTW UPMHEC WTPMHF
DILQTV BEILQS VTQLID SQLIEB
JKRSWX ACDJKR XWSRKJ RKJDCA

ACDJKR JKRSWX RKJDCA XWSRKJ
BEILQS DILQTV SQLIEB VTQLID
FHMPTW CEHMPU WTPMHF UPMHEC
GNOUVX ABFGNO XVUONG ONGFBA

(g) Spiral, clockwise:
ABCDEF LMNOPA IJKLMN DEFGHI
PQRSTG KVWXQB HUVWXO CRSTUJ
OXWVUH JUTSRC GTSRQP BQXWVK
NMLKJI IHGFED FEDCBA APONML

(h) Spiral, counterclockwise:
APONML NMLKJI IHGFED FEDCBA
BQXWVK OXWVUH JUTSRC GTSRQP
CRSTUJ PQRSTG KVWXQB HUVWXO
DEFGHI ABCDEF LMNOPA IJKLMN

Figure 3.2. Methods of transposition using a rectangle.

plaintext: t e a l p i t r o p e i e t

h r i s l t e f r r s d n

ciphertext: TEALP ITROP EIETH RISLT EFRRS DN

Hitt notes that the rail fence cipher “permits of no variation [i.e.,
doesn’t have a key] and is therefore read almost as easily as straight
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text when the method is known.” In fact, he points out that none of the
purely geometric ciphers are very secure because “they do not depend
on a key which can be readily and frequently changed.”

A slightly fancier—and slightly more secure—variation on the rect-
angular idea is the route cipher, where some sort of key tells you how to
read your message out of the rectangle. Historically, this was often used
as a sort of code-cipher hybrid, where entire words were written in the
spaces of the rectangular grid. This was supposedly used by the Earl of
Argyll in his 1685 uprising against King James II, but it is best known to
Americans from its use by the Union Army for telegraph transmission
in the Civil War. The following example was sent by Abraham Lincoln
on June 1, 1863:

GUARD ADAM THEM THEY AT WAYLAND BROWN FOR

KISSING VENUS CORRESPONDENTS AT NEPTUNE ARE OFF NELLY

TURNING UP CAN GET WHY DETAINED TRIBUNE AND TIMES

RICHARDSON THE ARE ASCERTAIN AND YOU FILLS BELLY THIS

IF DETAINED PLEASE ODOR OF LUDLOW COMMISSIONER

According to the cipher key that was then in use by the War Depart-
ment, the keyword GUARD meant that the words should be arranged
in a grid with seven rows of five words each and that they should be
written in this route: up the first column, down the second, up the
fifth, down the fourth, up the third, with a null word at the end of
each column. This gives us

kissing Commissioner Times

For Venus Ludlow Richardson and

Brown correspondents of the Tribune

Wayland at odor are detained

at Neptune please ascertain why

they are detained and get

them off if you can

Adam Nelly this fills up

belly turning
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As you can see, the nulls were often chosen to appear to make
sense—perhaps humorously!—with words in the previous or following
column. This cipher also specified that Venus was a codeword for
Colonel, Wayland meant captured, odor meant Vicksburg, Neptune was
Richmond, Adam was President of the United States, and Nelly meant
that the message was sent at 4:30 p.m. Once the grid is filled, it should be
clear that the last three words of the last full row are also nulls, making
the following plaintext:

For Colonel Ludlow. Richardson and Brown, correspondents of the Tri-

bune, captured at Vicksburg, are detained at Richmond. Please ascertain

why they are detained and get them off if you can. The President,

4:30 p.m.

3.3 permutations and permutation ciphers

There are other types of transpositions that are not primarily based on
geometric figures or objects, either 2- or 3-dimensional. Scribes through-
out the centuries have probably amused themselves by jumbling up
the letters in words, but the first systematic description of transposi-
tion without geometry seems to be by the same al-Kindi mentioned in
Section 1.5, who describes various means of transpositions within words
and within lines.

These methods were expanded on by Taj ad-Din Ali ibn ad-
Duraihim ben Muhammad ath-Tha’alibi al-Mausili, who described
24 variations of transposition ciphers, including writing each word
backward and reversing alternate letters of the message. In an English
example of the latter method, Alice would write the plaintext “Drink to
the rose from a rosy red wine” as follows:

plaintext: dr in kt ot he ro se fr om ar os yr ed wi ne
ciphertext: RD NI TK TO EH OR ES RF MO RA SO RY DE IW EN

What’s the big deal here? We are seeing the first explicit example of
a permutation cipher. A permutation in mathematics is any specified
way of rearranging the order of the elements of some set. For example,
consider the cipher which takes

ruby wine
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to

UYBR IENW

In each group of four letters, the first ciphertext position holds the
second plaintext letter, the second position holds the fourth letter, the
third letter stays in the same position, and the fourth ciphertext po-
sition holds the first plaintext letter. There are several ways used by
mathematicians to notate this permutation, but one common one is(

1 2 3 4
2 4 3 1

)
.

Likewise, ibn ad-Duraihim’s permutation could be written as(
1 2
2 1

)
.

The key to a permutation cipher is just the permutation used. One
common way of choosing and remembering a permutation is by a key-
word. Alice writes the letters of the keyword above the plaintext, much
like in the tabula recta cipher of Section 2.4:

keyword: tale tale tale tale tale tale tale tale tale tale
plaintext: theb attl eand thes word thep aper andt hepe nllu

She then assigns numbers to the letters of the keyword in alphabetical
order:

4132 4132 4132 4132 4132 4132 4132 4132 4132 4132
keyword: tale tale tale tale tale tale tale tale tale tale
plaintext: theb attl eand thes word thep aper andt hepe nllu

Note that the numbers 4132 give us another way of representing our
permutation.

The length of the keyword determines the length of each group (in
this case, 4 letters) and in each group, the letters of the ciphertext are
read off in order of the numbers corresponding to the key letters.
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4132 4132 4132 4132 4132 4132 4132 4132 4132 4132

keyword: tale tale tale tale tale tale tale tale tale tale

plaintext: theb attl eand thes word thep aper andt hepe nllu

ciphertext: HBET TLTA ADNE HSET ODRW HPET PREA NTDA EEPH LULN

Before Alice sends the message to Bob, she removes or changes the
groupings of the letters to make it harder for Eve to guess the length of
the permutation. The final cipher text is then

HBETT LTAAD NEHSE TODRW HPETP REANT DAEEP HLULN

What about deciphering? For that, you have to “unpermute” the
ciphertext letters. This should remind you of the idea of inverses that
we mentioned at the end of Section 1.3; in fact every permutation has
an inverse permutation that reverses its effects. Here’s one way to find
it: if Bob has the enciphering permutation(

1 2 3 4
2 4 3 1

)
,

he starts by exchanging the rows,(
2 4 3 1
1 2 3 4

)
,

and then he sorts the columns by the top row:(
1 2 3 4
4 1 3 2

)
.

So, the inverse of the permutation(
1 2 3 4
2 4 3 1

)
is the permutation in which the first position holds the original fourth
letter, the second position holds the first, the third letter stays in the
same position, and the fourth position holds the original second letter.

You might practice by deciphering the ciphertext

HDETS REEKO NTSEM WELLW
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which was encrypted using the same key (corresponding to the keyword
tale) as before.

It’s worth asking whether there are any bad keys for permutation
ciphers. Consider the expression(

1 2 3 4
4 1 1 3

)
.

This appears to be telling us that the first ciphertext position gets the
fourth plaintext letter, both the second and third positions get the first
letter, the fourth position gets the third letter, and the second letter
apparently gets thrown away.

For example,

garb agei ngar bage outx

would become

BGGR IAAE RNNA EBBG XOOT

This isn’t technically a permutation but a more general thing, which
mathematicians call a function from positions to letters. It doesn’t have
an inverse, because once we’ve thrown away the second letter, we can’t
generally get it back. Luckily, it’s pretty easy to tell the difference be-
tween a function that is a permutation and one that isn’t—just make
sure each letter is used exactly once.

So if all permutations are good keys, how many are there? If we use
4-letter groups, then the first letter can go in the first, second, third, or
fourth position. The second letter can go in any of the 3 positions that
are left, the third letter has 2 positions it can go in, and the last letter has
only 1 choice. So there are 4 × 3 × 2× 1 = 24 permutations on groups
of 4 letters. In general, if you have n-letter groups, then there are

n× (n− 1)× (n− 2)× · · · × 3× 2× 1

permutations, including the trivial permutation, which produces the
trivial cipher, as usual. Mathematicians use the symbol n to represent
this number and call it the factorial of n, or just n factorial. Factori-
als get pretty big pretty fast; for example 12 = 479,001,600, so there
are 479,001,600 different permutation ciphers using 12-letter groups. As
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with the other ciphers we have discussed, there are better methods of
breaking permutation ciphers than brute force, and we shall see some of
them in Sections 3.6 and 3.7.

Now, having implied that functions that are not permutations are
not useful for encryption and decryption, I should say that that’s not
quite true. However, we have to do something about the fact that some
letters get thrown away. The solution is to encrypt using an expan-
sion function, which leaves us with more letters than we started with.
Then it’s okay if some of them get thrown away when we decrypt. For
example, consider the cipher which takes

westw ardho

to

SEWTEW DROHRA

In our previous notation, this would correspond to the function

(
1 2 3 4 5 6
3 2 5 4 2 1

)
.

Note that there has to be a number in the top row for each letter in the
ciphertext, which is more than there are in the plaintext. One or more of
the numbers in the top row will not appear in the bottom row, but there
has to be a number in the bottom row for every number in the plaintext.
Mathematicians generally call a function like this an onto function,
but expansion function is a good description for cryptography. This sort
of encryption is very useful when Alice needs a certain number of let-
ters for some reason, like a particular step in a product cipher, or if
she just wants to confuse Eve but wants to use something less random
than nulls.

How does Bob decrypt a cipher like this? In the case of decryption,
Bob really does want to throw away some of the letters since they are
duplicates. For example, he could decrypt the preceding ciphertext using
the function
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1 2 3 4 5
6 2 1 4 3

)

This time there is a number in the top row for each number in the
plaintext, and the bottom row can skip some numbers from the cipher-
text. It is important that no number in the bottom row be repeated,
though; otherwise we would have some letter in the ciphertext used
twice. Mathematicians call a function like this a one-to-one function,
and cryptographers call it a compression function. Notice that since
the ciphertext letters in the second position and the fifth position are
always going to be the same, Bob could equally well decrypt using the
function

(
1 2 3 4 5
6 5 1 4 3

)
.

This is related to the fact that expansion functions, since they are not
permutations, don’t really have true inverses. We will talk about that
a little more after we talk about products of permutations in the next
section.

3.4 permutation products

I hope by now you can begin to guess, more or less, what will hap-
pen if we encrypt twice using two different permutation ciphers. Let’s
see what happens if after Alice encrypts her message with the keyword
tale, which is equivalent to the permutation

(
1 2 3 4
2 4 3 1

)
,

she encrypts again with the keyword poem, which is equivalent to the
permutation (

1 2 3 4
3 4 2 1

)
.
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4132 4132 4132 4132 4132

keyword: tale tale tale tale tale

plaintext: theb attl eand thes word

first ciphertext: HBET TLTA ADNE HSET ODRW

4312 4312 4312 4312 4312

keyword: poem poem poem poem poem

first ciphertext: hbet tlta adne hset odrw

second ciphertext: ETBH TALT NEDA ETSH RWDO

4132 4132 4132 4132 4132

keyword: tale tale tale tale tale

plaintext: thep aper andt hepe nllu

first ciphertext: HPET PREA NTDA EEPH LULN

4312 4312 4312 4312 4312

keyword: poem poem poem poem poem

first ciphertext: hpet prea ntda eeph luln

second ciphertext: ETPH EARP DATN PHEE LNUL

If Eve could look at both the ciphertext and the plaintext, she would
figure out quickly that this is the same as if Alice had encrypted with
the key (

1 2 3 4
3 1 4 2

)
.

Mathematicians often express this using a product notation:(
1 2 3 4
2 4 3 1

)
×
(
1 2 3 4
3 4 2 1

)
=
(
1 2 3 4
3 1 4 2

)
.

While we are on the subject, it’s worth noting that(
1 2 3 4
2 4 3 1

)
×
(
1 2 3 4
3 4 2 1

)

is not the same as (
1 2 3 4
3 4 2 1

)
×
(
1 2 3 4
2 4 3 1

)
.
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In other words, permutation products are not necessarily commutative.
If you don’t believe me, try encrypting our plaintext using the keyword
poem first and then the keyword tale. You should get a different answer.
This makes combining permutation ciphers a little different from some
of the other ciphers we have looked at.

We can also think about the product of a permutation with its
inverse. For example,(

1 2 3 4
2 4 3 1

)
×
(
1 2 3 4
4 1 3 2

)
=
(
1 2 3 4
1 2 3 4

)
.

In general, the product of a permutation and its inverse is the trivial
permutation. This makes sense, since encrypting followed by decrypting
should return the message to the original state. Likewise,(

1 2 3 4
4 1 3 2

)
×
(
1 2 3 4
2 4 3 1

)
=
(
1 2 3 4
1 2 3 4

)
,

which makes sense since we would expect the inverse of the inverse
to be the original permutation. This is one case where permutation
products are commutative.

Expansion and compression functions don’t behave so nicely.
Doing an encryption followed by a decryption does give us the trivial
permutation(

1 2 3 4 5 6
3 2 5 4 2 1

)
×
(
1 2 3 4 5
6 2 1 4 3

)
=
(
1 2 3 4 5
1 2 3 4 5

)
.

But this time reversing the order gives us something else:(
1 2 3 4 5
6 2 1 4 3

)
×
(
1 2 3 4 5 6
3 2 5 4 2 1

)
=
(
1 2 3 4 5 6
1 2 3 4 2 6

)
.

Once again, you should try this on a message. The technical distinction
is that expansion and compression functions only have one-sided in-
verses instead of true, two-sided inverses. This is related to why there
can be two decryption functions for the same encryption function, or
vice versa, as we saw in Section 3.3. The practical effect is that you
should encrypt only with expansion functions and decrypt only with
compression functions, not the other way around.
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But to answer our original question of this section, the upshot is
that—just like combining two repeating-key polyalphabetic ciphers—
combining two permutation ciphers with the same group length gives
you another permutation cipher with the same group length. What if
you combine permutation ciphers with different group lengths? For
example, after Alice encrypts her message with the keyword tale, she
could encrypt again with the keyword poetry.

4132 4132 4132 4132 4132 4132

keyword: tale tale tale tale tale tale

plaintext: theb attl eand thes word thep

first ciphertext: HBET TLTA ADNE HSET ODRW HPET

321546 321546 321546 321546

keyword: poetry poetry poetry poetry

first ciphertext: hbettl taadne hsetod rwhpet

second ciphertext: EBHTTL AATNDE ESHOTD HWREPT

4132 4132 4132 4132 4132 4132

keyword: tale tale tale tale tale tale

plaintext: aper andt hepe nllu xgar bage

first ciphertext: PREA NTDA EEPH LULN GRAX AEGB

321546 321546 321546 321546

keyword: poetry poetry poetry poetry

first ciphertext: preant daeeph lulngr axaegb

second ciphertext: ERPNAT EADPEH LULGNR AXAGEB

In this example Alice needed to add some extra nulls to make things
come out even.

Is this the same as encrypting with one permutation? If you look
closely, you’ll see that it can’t be a permutation on 4-letter groups, be-
cause some letters “leak” across from one group to another. The same
is true for the 6-letter groups. However, since the two keywords line up
every 12 letters, this is actually the same as a permutation on 12-letter
groups. In fact, we can write both our keyword permutation ciphers
as permutations on 12 letters: the permutation cipher corresponding to
tale, which we wrote with a key of
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1 2 3 4
2 4 3 1

)
,

could also be written with a key of(
1 2 3 4 5 6 7 8 9 10 11 12
2 4 3 1 6 8 7 5 10 12 11 9

)

and the cipher corresponding to poetry, which we would ordinarily
write with a key of (

1 2 3 4 5 6
3 2 1 5 4 6

)
,

could also be written with a key of

(
1 2 3 4 5 6 7 8 9 10 11 12
3 2 1 5 4 6 9 8 7 11 10 12

)

Then the key for the product cipher would be the product of the two
permutations, namely,(

1 2 3 4 5 6 7 8 9 10 11 12
2 4 3 1 6 8 7 5 10 12 11 9

)

×
(
1 2 3 4 5 6 7 8 9 10 11 12
3 2 1 5 4 6 9 8 7 11 10 12

)

=
(
1 2 3 4 5 6 7 8 9 10 11 12
3 4 2 6 1 8 10 5 7 11 12 9

)

Permutation ciphers with different group lengths still behave very
much like repeating-key ciphers, in that the length of the product key
is the least common multiple of the lengths of the original keys. As
in Section 2.7, as long as Eve doesn’t guess what Alice did, Alice has
achieved the security of a 12-letter keyword using only 10 letters. Eve
might realize that the letters don’t get mixed up as thoroughly with
these product ciphers as they would with a true 12-letter keyword per-
mutation cipher. It’s possible to keep alternating 4-letter keywords and
6-letter keywords until the letters are mixed up as much as you want, but
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in that case Alice and Bob are probably better off just using a 12-letter
keyword.

3.5 keyed columnar transposition ciphers

Now that we’ve spent some time examining permutation and keyword
permutation ciphers, I have to tell you that there doesn’t seem to be
much documentation for anyone using them in practice. The reason is
probably that whenever someone started to work out a keyword permu-
tation cipher, that person immediately realized that it would be at least
as secure for no more effort to make a product cipher by combining a
permutation with a columnar transposition.

Let’s look at one of our previous permutation encryption examples
again but this time arrange the text slightly differently:

plaintext ciphertext

4132

tale

theb HBET

attl TLTA

eand ADNE

thes HSET

word ODRW

thep HPET

aper PREA

andt NTDA

hepe EEPH

nllu LULN

This seems like a convenient way for Alice to keep track of where
she is in the plaintext. She has to write the keyword out only once, and
if she reads across the rows on the right-hand side of this table, she gets
the same ciphertext as before. However, since the ciphertext letters are
now in a rectangle, it seems logical to apply columnar transposition and
read down the columns instead. This gives her the following ciphertext.

HTAHO HPNEL BLDSD PRTEU ETNER EEDPL TAETW TAAHN
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Maybe you noticed that Alice didn’t actually need the columns on
the right-hand side of the preceding display: all she really has to do is
read down the columns on the left-hand side but in the order accord-
ing to the key. First she reads the column numbered 1, then 2, 3, and
4. This product cipher is called keyed columnar transposition and ap-
pears, apparently for the first time, in a work on cryptography by John
Falconer. Falconer was a seventeenth-century English cryptographer at
the Court of James II about whom not much is known. His work was
published posthumously in 1685. After that, ciphers based at least in
part on keyed columnar transposition were in serious use somewhere in
the world more or less continuously until at least the 1950s.

In order for Bob to decrypt the message quickly, he can start by
writing the keyword and column numbers across the top of a blank
table. He can figure out the correct number of rows by dividing the
total number of letters by the length of the key, and then he writes the
ciphertext down the columns in the order specified by the key. Finally,
he reads off the plaintext across the rows.

In terms of security, keyed columnar transpositions are not actually
that much more secure than permutation ciphers. The key for a colum-
nar transposition is the number of rows—or the number of columns,
since if you know the approximate length of the message, knowing
one is the same as knowing the other. In keyed columnar transposi-
tion the number of columns depends only on the length of the key for
the permutation cipher. So, there are exactly the same number of keyed
columnar transposition keys as permutation keys. And, as we shall see
in Sections 3.6 and 3.7, there are other attacks on permutation ciphers
that apply about equally well to keyed columnar transposition ciphers.

There is one big advantage to keyed columnar transpositions over
permutations. Remember that the product of two additive ciphers is an-
other additive cipher, two multiplicative ciphers make a multiplicative
cipher, two affine ciphers give you another affine cipher, and two permu-
tation ciphers give you another permutation cipher, although it might
be of a different key length. But the product of two keyed columnar
transpositions is not a keyed columnar transposition and is considerably
harder to break in general than a single such transposition.

To see why, let’s consider a very short message with only 9 letters
and a very short key of only 3 positions.
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3 1 2

a g r

e a t

w a r

First we apply the following permutation.

key: 312 312 312

plaintext: agr eat war

first ciphertext: GRA ATE ARW

We could think of this as the permutation(
1 2 3 4 5 6 7 8 9
2 3 1 5 6 4 8 9 7

)

on nine letters. Then we apply columnar transposition.

first ciphertext second ciphertext

GRA GAA

ATE RTR

ARW AEW

We could also think of this as a permutation on nine letters:(
1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9

)

Notice that since we happen to have a square, applying the transposition
twice would cancel itself out. This permutation happens to be its own
inverse.

Now, for the sake of example, let’s apply another columnar transpo-
sition with the inverse key. This time I’ll condense the steps, since you
probably have the idea.

2 3 1

G A A

R T R

A E W
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Keep in mind what we are doing: we’ve applied two permutations
that are inverses of each other, alternated with two columnar transposi-
tions that are also inverses of each other. You might expect everything
to cancel out. But it doesn’t: the final ciphertext is

ARW GRA ATE

which is not the same as the original plaintext.
How did this happen? Remember that the order in which we

combine permutations makes a difference, unlike for addition or mul-
tiplication. So the fact that we alternate keyed permutations with
columnar transpositions means that nothing cancels out and we end
up with a slightly more complicated transposition cipher, which can get
very much more complicated if the two rectangles are not the same size.
(See Sidebar 3.1 for more details.)

� � � sidebar 3.1. functional nihilism � � �

If you are paying close attention, you might notice that while our

example of double keyed columnar transposition on a 3×3 square
didn’t produce plaintext, it actually does produce something you

can read without a columnar transposition. The easiest way to see

why uses the function notation I will explain in Section 4.3, so feel

free to postpone reading this sidebar until after you have read that

section.

First of all, we will use Greek letters to stand for

permutations, as mathematicians often do. In particular, since

π is the Greek letter corresponding to p, it’s often used for

permutations. It has nothing to do here with the number

3.1459 . . ., which is the ratio of the perimeter of a circle to its

diameter. We will also use σ to stand for the permutation

corresponding to a scytale cipher since σ is the first letter in

scytale.

Let’s let πn stand for a permutation cipher with a key length

of n—the exact key doesn’t matter. The one we used on our 3×3
square, for example, would be π3. And let’s let σmn be the scytale

cipher that writes the plaintext in m rows and reads off the
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ciphertext in n columns. The inverse of a permutation cipher with

key length n is some other permutation cipher with key length

n, which we’ll denote π−1n . According to the “shoes-and-socks”

principle, the inverse of writing the plaintext in m rows and

reading the ciphertext in n columns is first writing the ciphertext

in n columns and then reading the plaintext in m rows. But this is

the same as writing in n rows and reading in m columns. So, the

inverse of σmn is σnm, and the inverse of σ33, or any scytale cipher

with a square rectangle, is itself. We observed this earlier without

using the notation.

Now let’s look at our example. First, we wrote the plaintext

in rows and applied the permutation π3. Then we read it off in

columns, which is σ33. Then we wrote it in rows again and applied

π−13 . Lastly, we applied σ33 again. So the final ciphertext was

C1C2 · · ·C9 = σ33π
−1
3 σ33π3(P1P2 · · · P9)

Does that tell us anything? We’ve pretty firmly established

that π−13 σ33 is not the same as σ33π
−1
3 , which is why the two

scytale ciphers and the two permutations don’t all cancel. But let’s

think about σ33 some more. Remember that we can think of it as

writing in three columns and reading in three rows or writing in

three rows and reading in three columns. So what we are really

doing is just swapping rows and columns. Thinking of it that way,

we see that

σ33π
−1
3 σ33

means swap the columns and rows, permute the columns, and

swap the columns and rows again. If you try this, it should

become clear that the final result is to swap the rows of the text

with which we are working. So

C1C2 · · ·C9 = σ33π
−1
3 σ33π3(P1P2 · · · P9)

means permute the columns using π3 and then permute the rows

using π−13 . In fact, there isn’t really a columnar transposition

going on at all. You should test this with our example:
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plaintext ciphertext

a g r A R W

e a t G R A

w a r A T E

Incidentally, a transposition that permutes the rows of a

rectangle as well as the columns is often called a Nihilist

transposition cipher. According to Kerckhoffs, a transposition

using a square and permuting both rows and columns by the

same key, without exchanging rows and columns, was one of the

methods used by Russian Nihilists to send secret messages in the

1870s and 1880s. We will call the more general version, with any

rectangle, two keys, and the exchange of rows and columns, a

Nihilist columnar transposition. An analysis like the one we

just did will show you that a product of two Nihilist columnar

transpositions using the same completely filled square grid will

be another Nihilist columnar transposition. So will two Nihilist

columnar transpositions on different completely filled nonsquare

rectangles, but only if the number of columns in the first rectangle

is the same as the number of rows in the second. As far as security

is concerned, it turns out that the techniques of Sections 3.6

and 3.7 will still break everything except for the order of the

rows, which is pretty easy to sort out once you have the correct

plaintext on each row. So this cipher isn’t generally considered

worth the trouble.

If the number of columns in the first rectangle is not the same

as the number of rows in the second, then you have a true double

columnar transposition, which can be very hard to break.

This idea of a double keyed columnar transposition cipher (often
called double transposition for short) seems to have come into common
use somewhat before World War I. Although not impossible to break,
as we shall see in Section 3.7, it is generally considered the most secure
transposition cipher that can reliably be done purely by hand and con-
tinued to be used into World War II, especially by Allied secret agents
in the field and resistance fighters in occupied Europe.
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3.6 determining the width of the rectangle

The steps in cryptanalyzing the transposition ciphers we have discussed
are very much parallel to the steps in cryptanalyzing a repeating-key
cipher: first Eve needs to make sure she knows what kind of cipher she
really has, then she finds the length of the key, and finally she uses
superimposition to find the key itself. Luckily, the first step is pretty
easy. Since transposition ciphers move letters around without changing
them, the frequencies of the letters will be the same in the ciphertext as
they are in the plaintext. This is usually pretty obvious; if there is any
doubt one could use the various index of coincidence tests that we saw
in Section 2.2 and will see in Section 5.1.

The key for the scytale cipher is the number of rows or, alterna-
tively, the number of columns since it’s easy to get one from the other.
As we said in Section 3.1, that’s pretty easy to find out. If Eve knows
the total number of squares in the grid, she just needs to find all the
possible numbers of rows and columns that give her the right rectangle
and try writing the ciphertext down the columns until she gets readable
plaintext across the rows. If Alice has sensibly padded the message with
nulls, then Eve might get stuck. If so, she would next throw away the
last letter of the message and try again, and so on.

If Eve suspects she has a permutation cipher or a keyed columnar
transposition cipher, she starts the same way. She guesses the number
of rows and columns and writes the ciphertext either across (for a per-
mutation cipher) or down (for a columnar transposition). The number
of columns is the length of the permutation or keyword being used for
the key. In this case, it’s not quite as easy for her to tell whether she has
the right-size grid. One test that she can use is to see if the proportions
of vowels and consonants on each row is approximately correct.

Suppose we pick some letters from English text at random. Accord-
ing to our letter-frequency tables, approximately 38.1% of them will
be vowels. So if you pick 10 letters at random, the average number of
vowels you will get is 3.81, and the most likely outcome is that you will
get 4. This won’t always happen: sometimes you will get a few more,
sometimes a few less. In fact, it’s more likely that we will not get ex-
actly 4. How likely are 4 vowels? Well, first, we can list the number of
patterns of vowels and consonants we could have:
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VVVVCCCCCC

VVVCVCCCCC

VVVCCVCCCC

VVVCCCVCCC
...

That’s going to take a while, but if you finish it, you will get 210 possible
patterns.

Now consider the first pattern, which is 4 vowels followed by 6 con-
sonants. The chance of picking the first vowel is .381, the same for the
second, the third, and so on. The chance of picking the first consonant
is .619, the same for the second, and so on. So the total chance of that
pattern is .381×.381×.381×.381×.619×.619×.619×.619×.619×.619 ≈
.00119.

If you think about it, the chance of the second pattern is the same,
and so on for every other pattern, so the total chance of picking exactly 4
vowels is about 210× .00119 ≈ .249. In other words, we will get exactly
4 vowels only about a quarter of the time. But we will very often get
approximately 4 vowels. How do we quantify that?

Statisticians have long had a way to measure how close to the
average we expect to get in situations like this; it’s now known as vari-
ance. The idea is that we will pick our 10 letters at random several times,
say, 100 times, and each time we will calculate the difference between
what we actually get and what we would get on the average. Some of
the differences will be positive and some negative, and we don’t want
these to cancel out. Cryptographers originally took the absolute value of
the difference, but it turns out to be easier to predict what will happen
mathematically if we square the difference instead. Then we take the
average of these squared differences. Ordinarily that would mean divid-
ing by 100, but again in this special situation it turns out to be easier
to predict what will happen if we divide by 1 less, or 99. And that’s the
variance.

What do we expect the variance for the number of vowels to be?
Statisticians have shown that it should be about the average chance
of a vowel times the average chance of a consonant times the number
of letters we picked each time, or .381 × (1 − .381) × 10 ≈ 2.358 in
this case.
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That holds only if the letters are picked at random. If instead we
actually pick 100 ten-letter English words, then the variance will be
different. For starters, if we pick 10 letters at random, there’s a small
chance (about .8%) that we won’t pick any vowels, whereas if we pick
a 10-letter word, there’s virtually no chance that we will pick one with
no a’s, e’s, i’s, o’s, or u’s. In general, the variance for actual English text
is going to be much smaller than that for randomly chosen letters from
English text.

How does this help Eve cryptanalyze a transposition cipher? Sup-
pose she has the following ciphertext.

OHIVR SVAHT BLRHL HLBIT MBETM NOEIO

ITETK ROWTN ATHIG NSDEN UPBLN TSEMA

TADAA ERARI AOWSA YIAPT NAEOW BCDRE

WAHMT GEDER HFDDT EAEHA TEHME IELBO

HIUSI EKIUE UHESL MTKSE CREP

She suspects it is from a keyed columnar transposition. There are 144
letters here, which means a lot of divisors she could try: 1, 2, 3, 4, 6, 8, 9,
12, 16, 18, 24, 36, 48, 72, and 144. However, it’s pretty uncommon to have
less than 4 or more than 20 columns in a cipher like this, especially if
the key comes from a keyword. So, Eve can probably narrow this down
some. Six seems like a good number of letters for a keyword, so let’s
start there. Then there are 24 rows, so Eve writes the ciphertext down
the columns of her table. She counts the number of vowels on each row.
Since there are 6 columns, the average number of vowels in 6 letters is
6 × .381 ≈ 2.286, and she records the square of the difference between
these two numbers on each row (Table 3.1).

The grand total turns out to be about 40.787; dividing that by 17 (the
number of rows minus 1) gives about 5.098 for the variance. What does
that mean? If Eve guessed right about the number of columns, then read-
ing across the rows should give her—well, not plaintext yet because the
columns aren’t in the right order. However, each row would be the right
letters for plaintext—just in the wrong order. On the other hand, if she
guessed wrong, then everything is hopelessly jumbled. If Eve guessed
wrong, the variance will be more like the variance for random sets of 6
letters, which is .381× (1− .381)× 6 ≈ 1.415, and if Eve guessed right,
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Table 3.1.
Calculating the variance for our ciphertext

Vowels Expected Square of Difference

O M E W E H 3 2.286 (.714)2 ≈ .510
H N N S D I 1 2.286 (−1.286)2 ≈ 1.654
I O U A E U 6 2.286 (3.714)2 ≈ 13.794
V E P Y R S 1 2.286 (−1.286)2 ≈ 1.654
R I B I H I 3 2.286 (.714)2 ≈ .510
S O L A F E 3 2.286 (.714)2 ≈ .510
V I N P D K 1 2.286 (−1.286)2 ≈ 1.654
A T T T D I 2 2.286 (−.286)2 ≈ .0818
H E S N T U 2 2.286 (−.286)2 ≈ .0818
T T E A E E 4 2.286 (1.714)2 ≈ 2.938
B K M E A U 3 2.286 (.714)2 ≈ .510
L R A O E H 3 2.286 (.714)2 ≈ .510
R O T W H E 2 2.286 (−.286)2 ≈ .0818
H W A B A S 2 2.286 (−.286)2 ≈ .0818
L T D C T L 0 2.286 (−2.286)2 ≈ 5.226
H N A D E M 2 2.286 (−.286)2 ≈ .0818
L A A R H T 2 2.286 (−.286)2 ≈ .0818
B T E E M K 2 2.286 (−.286)2 ≈ .0818
I H R W E S 2 2.286 (−.286)2 ≈ .0818
T I A A I E 5 2.286 (2.714)2 ≈ 7.366
M G R H E C 1 2.286 (−1.286)2 ≈ 1.654
B N I M L R 1 2.286 (−1.286)2 ≈ 1.654
E S A T B E 3 2.286 (.714)2 ≈ .510
T D O G O P 2 2.286 (−.286)2 ≈ .0818

it will be more like the variance for English text, which is much smaller.
Since the variance Eve got is even larger than for random letters, she
concludes that she guessed wrong.

Eve tries again, this time using the next divisor in the list, which
is 8 (Table 3.2). Without going through all the details this time, it turns
out that she gets a variance of about 0.462, compared to an expected
variance of .381 × (1 − .381) × 8 ≈ 1.887 for random sets of 8 letters.
Now there’s a good possibility that Eve has found the right number of
columns. And the rows do look to the naked eye as if they might be
scrambled plaintext.
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Table 3.2.
Starting a second try for the variance

I II III IV V VI VII VIII

O I O N W W H K
H T W T S A A I
I M T S A H T U
V B N E Y M E E
R E A M I T H U
S T T A A G M H
V M H T P E E E
A N I A T D I S
H O G D N E E L
T E N A A R L M
B I S A E H B T
L O D E O F O K
R I E R W D H S
H T N A B D I E
L E U R C T U C
H T P I D E S R
L K B A R A I E
B R L O E E E P

3.7 anagramming

The next step in cryptanalyzing a permutation cipher or a keyed colum-
nar transposition cipher is to find the permutation that serves as the key.
We do this by anagramming, which is pretty much what it sounds like.
In ordinary conversation, an anagram is when you rearrange the letters
of one word or phrase to get another. In cryptanalysis, anagramming is
rearranging the letters of ciphertext to get plaintext. What makes this
feasible is that we are rearranging not just individual letters, but entire
columns. For example, it’s pretty unlikely that column II follows col-
umn I. HT on the second line is an unlikely combination, but possible,
especially if the H is the end of one word and the T is the beginning of
the next. However, VB on the fourth line is almost impossible, since V
hardly ever ends a word or even a syllable in English; the same is true
for VM on the seventh line. In fact, columns VII and VIII are the only
ones that are really likely to follow column I (Table 3.3).
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Table 3.3.
The contact method

I VII Frequency I VIII Frequency

O H .0005 O K —
H A .0130 H I .0060
I T .0100 I U —
V E .0080 V E .0080
R H .0010 R U .0015
S M .0005 S H .0050
V E .0080 V E .0080
A I .0010 A S .0080
H E .0165 H L .0005
T L .0015 T M .0005
B B — B T .0005
L O .0020 L K —
R H .0010 R S .0045
H I .0060 H E .0165
L U .0015 L C .0020
H S — H R .0010
L I .0045 L E .0090
B E .0055 B P —

Which column is a better fit, VII or VIII? We can put I next to VII
and I next to VIII and see which looks like a better collection of di-
graphs. If it’s not obvious to the eye, we can put the frequency of each
digraph along with it. (This is sometimes called the contact method.)
The dashes indicate digraphs whose frequencies are negligible, although
not necessarily zero.

As a rough way of scoring the two options, Friedman suggests
adding the frequencies in each case. That’s easy and usually works, but
it’s wrong mathematically, as Friedman goes on to point out. After all,
if you want to know what the probability is that the first row starts with
OH and the second row starts with HA, you don’t add the probabilities—
you multiply them. Multiplying all these small numbers is such a pain,
however, that Friedman suggests using logarithms, which is a common
trick for making multiplication of a large number of things into a much
easier addition. The relevant property is that
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log(x× y) = log x+ log y,

and so instead of doing the calculation

.0005× .0130× .0100× .0080× · · ·

for the first column, we can do

log .0005+ log .0130+ log .0100+ log .0080+ · · · .

Even better, we can look up the logarithms of the frequencies in a
table just as easily as we can look up the original frequencies, so we
never actually have to compute the logarithms. In the case of a neg-
ligible frequency, we will use log 0.0001, since 0.0001 is quite small
compared to the other numbers in our table. The numbers we arrive
at for each combination, which are sometimes called the log weights,
are approximately −49 for I with VII and −51 for I with VIII. They
are negative because the logarithm of a number between 0 and 1, such
as a probability, is negative. The closer a log weight is to 0, the larger
the probability is that the column is correct plaintext. Thus we suspect
column VII should follow column I. Continuing along these lines, we
can either consider likely digraphs starting with column VII or perhaps
likely trigraphs starting with columns I and VII. Trigraph frequencies
are even more imprecise than digraph frequencies, but we might note
that the TL on line 10 is almost certainly followed by an E, which ap-
pears only in column II. Tentatively trying column II next, we have
Table 3.4.

If you would like to finish the deciphering, you might note next that
ITM on the third line is almost certainly followed by a vowel, and HST
on the third-to-last line is probably followed by either a vowel or an
R. At that point you might be ready to make a guess for a word that
includes the letters at the beginning of the fifth line, and that should
pretty much do the trick. When you are done, the numbers at the tops of
the columns will be the same numbers Alice used when she encrypted,
from which you could find the permutation she used or guess at the
keyword.



104 • Chapter 3

Table 3.4.
Starting to anagram the ciphertext

I VII II III IV V VI VIII

O H I O N W W K
H A T W T S A I
I T M T S A H U
V E B N E Y M E
R H E A M I T U
S M T T A A G H
V E M H T P E E
A I N I A T D S
H E O G D N E L
T L E N A A R M
B B I S A E H T
L O O D E O F K
R H I E R W D S
H I T N A B D E
L U E U R C T C
H S T P I D E R
L I K B A R A E
B E R L O E E P

� � � sidebar 3.2. but when you talk about disruption � � �

One fairly easy way of making a columnar transposition more

complicated is to “disrupt” it by leaving some of the spaces in the

grid blank or, perhaps, taking them out of order. The easiest way

for Alice to make a disrupted columnar transposition is the

incompletely filled rectangle, which just means she leaves

spaces at the end of the grid blank instead of filling them with

nulls. This has the added bonus of making it more difficult for Eve

to guess the width of the rectangle, since there is no longer any

reason for it to be a divisor of the length of the message. On the

other hand, since Bob knows the width of the rectangle, all he

has to do is divide the length of the message by the width of the

rectangle. The quotient is the number of completely filled rows

and the remainder is the number of filled spaces in the last row.

Bob knows from the key which columns Alice filled in last, so he

know which columns are “short.”
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Eve, unlike Bob, has a problem. Suppose she correctly

identifies the width of the rectangle—say, through our statistical

technique—and therefore figures out how many blank spaces are

in the last row. She still can’t yet tell which columns correspond to

the long ones and which correspond to the short ones. Therefore,

she doesn’t know exactly where each column begins and ends.

This makes the contact method considerably more complicated,

although not impossible. Alice and Bob can make life even harder

for Eve by designating particular blank spaces in the middle of the

grid. Too much of this and the contact method becomes almost

impossible, although it also makes the system more inefficient. On

the other hand, the technique of multiple anagramming we are

about to see works just as well on disrupted transpositions as on

any other sort.

If Eve is faced with a double transposition, or some system that uses
a shape other than a rectangle, then her job is much harder. In the case of
a single keyed columnar transposition, letters that are on the same row
of the plaintext rectangle end up a fixed distance apart in the ciphertext,
which gives her a way to test whether she has guessed the right shape
of rectangle. In the case of a double transposition or irregular shape, this
regularity won’t be present, and it will be very difficult for Eve to start
anagramming. However, if Eve has multiple messages in the same key,
then she has a chance. In particular, she needs two or more messages
that are the same length and encrypted with the same key. Then she can
superimpose them in much the same way as she superimposed rows of
the same message in Section 2.6. Since corresponding letters in the two
messages are treated exactly the same way by the transposition, we can
use the contact method to anagram the columns. This is calledmultiple
anagramming.

For example, suppose Eve has 5 messages and believes that the first
12 letters of each message were encrypted in the same way, as shown
in Table 3.5. The Js in column I in Table 3.5 are almost certainly both
followed by vowels other than Y, so that means column III, X, or XI. LN
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Table 3.5.
Superimposing multiple ciphertexts encrypted with the same key

I II III IV V VI VII VIII IX X XI XII

S E U I S M D M N A A S
J Y I N B N D H N O A L
L L N A A U E L C U I D
J E E I P K D C N A A E
B A I Y R D B D D U N G

Table 3.6.
Starting to anagram the multiple ciphertexts

I X II III IV V VI VII VIII IX XI XII

S A E U I S M D M N A S
J O Y I N B N D H N A L
L U L N A A U E L C I D
J A E E I P K D C N A E
B U A I Y R D B D D N G

on the third line is unlikely, and so is BN on the fifth line, so that leaves
column X. Now we have Table 3.6.

What’s next? Well, the Us on the third and fifth lines in Table 3.6
are probably followed by consonants, which means column VIII, IX, or
XII. JAE on the fourth line doesn’t look too good, so that rules out XII.
Both VIII and IX look reasonable. We could try to distinguish them using
digraph frequencies, but remember that frequency tests are about which
option is most probable—they don’t always give you the right answer.
In the end, we might have to try them both. I’ll let you finish this up if
you want; as hints, I’ll tell you that there are a bunch of names in the
plaintext, and since we have only the first 12 letters of each message,
they do cut off in the middle of a word.

3.8 looking forward

We will see in Chapter 4 that transpositions are extremely important
building blocks of modern ciphers. All kinds are used, including colum-
nar transpositions, geometric transpositions, permutations, expansion
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and compression functions, products of these, and many others. In most
cases, however, fixed transpositions (no key) are used in conjunction
with keyed substitutions. The reason is partly historical. Fixed transposi-
tions were easy to implement in the early days of computers; you could
implement them by running wires from one place to another. Keyed
transpositions are harder. Since then, the cases where ciphers are im-
plemented using wires or other hardware have been decreasing, and
the cases where they are done with software programs have been in-
creasing. So, the use of keyed transpositions is increasing, but it’s still
somewhat rare.

One partial exception to this rule is rotations, which are a certain
simple type of permutation. A rotation on n letters with a key of k is a
permutation of the form(

1 2 · · · n− k n− k+ 1 n− k+ 2 · · · n

k+ 1 k+ 2 · · · n 1 2 · · · k

)
.

In other words, the block of plaintext letters is rotated around into ci-
phertext positions without actually mixing it up. This would not be very
secure by itself, but it’s useful as a component of other ciphers. Further-
more, rotations, even with variable keys, can be implemented relatively
easily in both hardware and software.

Rotations with keys have been used as a part of several modern
ciphers, including Madryga, RC5, RC6, and Akelarre. Unfortunately,
these ciphers have had mixed success. Madryga was published in 1984
as an alternative to existing ciphers that would be faster and easier to
implement in software. It is now considered seriously flawed. RC5 was
published in 1995 and was likewise intended to be fast in software as
well as hardware. It was considered strong for its time, although some
attacks on it have been discovered. Its lack of widespread adoption prob-
ably had more to do with licensing fees than security. RC6, published
in 1998, was deliberately designed to improve on RC5. It is considered
a strong cipher, although it is not especially common. The Advanced
Encryption Standard, which we will meet in Chapter 4, is generally pre-
ferred, because it has roughly equal security, government endorsement,
and no licensing fees.

Akelarre is an interesting case. Published in 1996, it was also based
in part on RC5, in hopes of combining the strengths of RC5 with the
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security features of another cipher known as IDEA. Unfortunately, sev-
eral attacks on it were quickly discovered, including one that essentially
bypasses everything but the rotation. That attack shows that a combina-
tion of two ciphertexts can be expressed as a rotation of a combination
of two plaintexts. If some plaintexts are known, or even if something is
known about the frequencies at which different sorts of plaintexts occur,
then a process very much like anagramming can be used to determine
which rotation is correct. These experiences probably didn’t increase
confidence in ciphers with keyed rotations, but RC6 shows that when
properly handled they can still be very useful in modern cipher design.



4
Ciphers and Computers

4.1 bringing home the bacon: polyliteral ciphers
and binary numerals

A distinction is sometimes made between polygraphic substitution ci-
phers and polyliteral substitution ciphers. Polygraphic ciphers, as we
saw in Section 1.6, transform a block of plaintext letters into a block of
ciphertext letters of the same size. Polyliteral ciphers, on the other hand,
transform a single letter into a block of letters or symbols. For our first
example, we go back to the ancient Greeks again. In the second century
BCE, the Greek historian Polybius wrote a 40-volume history of an-
cient Greece and Rome with considerably many digressions, including
one about cryptography and, in particular, what he refers to as “signal-
ing by fire”—torches or beacon-fires. Polybius may be the first author
to distinguish between codes and ciphers and gives several examples of
using torches to send coded messages. However, it’s the cipher which
interests us here. In Polybius’ words:

It is as follows: We take the alphabet and divide it into five
parts, each consisting of five letters. There is one letter less in the
last division, but this makes no practical difference.∗ Each of the
two parties who are about to signal to each other must now get
ready five tablets and write one division of the alphabet on each
tablet . . . . [T]he dispatcher of the message will now raise the first
set of torches on the left side indicating which tablet is to be con-
sulted, i.e. one torch if it is the first, two if it is the second, and so

∗Polybius’ Greek alphabet had 24 letters.



110 • Chapter 4

on. Next he will raise the second set on the right on the same prin-
ciple to indicate what letter of the tablet the receiver should write
down.

Modern descriptions of this usually use a 5-by-5 square instead of
5 tablets, and the system is generally called the Polybius square, or
Polybius checkerboard. Also, since the modern English alphabet has
26 letters instead of 24, we will have to leave 1 out or put 2 of them
in the same square—putting i and j together is traditional. The square
then looks like this.

1 2 3 4 5

1 a b c d e

2 f g h ij k

3 l m n o p

4 q r s t u

5 v w x y z

So if Alice wanted to encode “I fear the Greeks,” it would look like this:

plaintext: i f e a r t h e g r e e k s

ciphertext: 24 21 15 11 42 44 23 15 22 42 15 15 25 43

Better still,

ciphertext: 24211 51142 44231 52242 15152 543

This is a biliteral cipher, since each plaintext letter becomes two cipher-
text digits. Like most ciphers from the ancient world, this one doesn’t
have a key, although we could add one by scrambling the order of the
letters in the square, the numbers along the top and side, or both.

A version a little more suited to the English alphabet might look like
this:
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0 1 2 3 4 5 6 7 8

0 a b c d e f g h

1 i j k l m n o p q

2 r s t u v w x y z

One suited to the 29-letter Danish and Norwegian alphabet might be∗

0 1 2 3 4 5 6 7 8 9

0 a b c d e f g h i

1 j k l m n o p q r s

2 t u v w x y z æ ø å

You might be thinking that the last example was gratuitous, but I
want to call your attention to exactly what the transformation is in this
instance.

plaintext: a b c d e f g h i j k l · · ·
ciphertext: 01 02 03 04 05 06 07 08 09 10 11 12 · · ·

Aside from some leading zeros, all we have done is convert the letters
to numbers! This is because, if we leave the upper-left square blank, the
letter in row r and column c is the (r · 10 + c)th letter of the alphabet.
However, our normal system of writing numbers represents this number
as rc, that is, the digit for r followed by the digit for c. For example, the
letter in row 2 and column 3 is w, which is the (2 · 10 + 3)rd = 23rd
letter of the alphabet in English, Danish, or Norwegian.†

So what about the English version of the table? The transformation
here is

plaintext: a b c d e f g h i j k l · · ·
ciphertext: 01 02 03 04 05 06 07 08 10 11 12 13 · · ·

Now the letter in row r and column c is the (r · 9 + c)th letter of the
alphabet. For example, the letter in row 2 and column 7 is “y,” which is

∗I want to make it clear here that the 29-letter Swedish alphabet would have worked
just as well for this example. Having grown up in Minnesota, I know how dangerous it
is to appear to take sides between Norwegians and Swedes.

†Or Swedish.



112 • Chapter 4

the (2 · 9 + 7)th = 25th letter of the alphabet. If we instead write this
number as 27, then we are using a base 9, or nonary, numeral system
instead of the usual base 10, or decimal, system.

If we use a small base, such as 3 (ternary), then 2 digits are not
enough to represent all the plaintext letters. One way to get around this
is to use multiple tables and put the digit of the table before the row and
column:

Table 0 Table 1 Table 2

0 1 2

0 a b

1 c d e

2 f g h

0 1 2

0 i j k

1 l m n

2 o p q

0 1 2

0 r s t

1 u v w

2 x y z

This gives

plaintext: a b c d e f g h i j k l · · ·
ciphertext: 001 002 010 011 012 020 021 022 100 101 102 110 · · ·

Now we have a triliteral system. The letter in table t, row r, and column
c is the (t ·32+r ·3+c)th letter of the alphabet. For example, the letter in
table 2, row 0, and column 1 is “s,” which is the (2·32+0·3+1)th = 19th
letter of the alphabet. If multiple tables seem too cumbersome, it is also
common to use one table, grouping multiple digits in the rows, columns,
or both:

00 01 02 10 11 12 20 21 22

0 a b c d e f g h

1 i j k l m n o p q

2 r s t u v w x y z

Base 2 (binary) numerals are also very common in modern ci-
phers due to their use in computers. In this case we would need very
many nested tables unless we group the digits, so we will (group them,
that is):
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000 001 010 011 100 101 110 111

00 a b c d e f g

01 h i j k l m n o

10 p q r s t u v w

11 x y z

This gives

plaintext: a b c d e · · ·
ciphertext: 00001 00010 00011 00100 00101 · · ·

Here, a numeral like 10010 represents the (1 · 24 + 0 · 23 + 0 · 22 +
1 ·2+0)th = 18th letter of the alphabet, or r. As you probably know, it’s
very convenient to use binary numerals in computers because the two
digits can be represented by something, such as electrical current, being
either on or off.

The first use of a binary numeral system in cryptography, however,
was well before the advent of digital computers. Sir Francis Bacon
alluded to this cipher in 1605 in his work Of the Proficience and Ad-

vancement of Learning, Divine and Humane and published it in 1623
in the enlarged Latin version De Augmentis Scientarum. It is actually a
combination of a cipher with a steganographic system, as not only the
meaning but the very existence of the message is hidden in an innocuous
“covertext.” As usual, we will give a modern English example.

Suppose we want to encrypt the word “not” into the covertext “I
wrote Shakespeare.” First convert the plaintext into binary numerals:

plaintext: n o t

ciphertext: 01110 01111 10100

Then stick the digits together into a string:

011100111110100

Now we need what Bacon called a “biformed alphabet,” that is, one
where each letter can have a “0-form” and a “1-form.” We will use roman
letters for our 0-form and italic for our 1-form. Then for each letter of
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the covertext, if the corresponding digit in the ciphertext is 0, use the
0-form, and if the digit is 1 use the 1-form:

0 11100 111110100xx

I wrote Shakespeare.

Any leftover letters can be ignored, and we leave in spaces and
punctuation to make the covertext look more realistic. Of course, it still
looks odd with two different typefaces—Bacon’s examples were more
subtle, although it’s a tricky business to get two alphabets that are sim-
ilar enough to fool the casual observer but distinct enough to allow for
accurate decryption.

Ciphers with binary numerals were reinvented many years later for
use with the telegraph and then the printing telegraph, or teletypewriter.
The first of these were technically not cryptographic since they were
intended for convenience rather than secrecy. We could call them non-
secret ciphers, although for historical reasons they are usually called
codes or sometimes encodings. They are not codes in the cryptographic
sense, since they work with letters or characters, not words. To try
to avoid confusion as much as possible I am going to call them non-
secret encodings. The most well-known nonsecret encoding is probably
the Morse code used for telegraphs and early radio, although Morse
code does not use binary numerals. In 1833, Gauss, whom we met in
Chapter 1, and the physicist Wilhelm Weber invented probably the first
telegraph code, using essentially the same system of 5 binary digits as
Bacon. Jean-Maurice-Émile Baudot used the same idea for his Bau-
dot code when he invented his teletypewriter system in 1874. And the
Baudot code is the one that Gilbert S. Vernam had in front of him in
1917 when his team at AT&T was asked to investigate the security of
teletypewriter communications.

Vernam realized that he could take the string of binary digits pro-
duced by the Baudot code and encrypt it with a version of the tabula
recta polyalphabetic substitution ciphers we looked at in Section 2.4.
Each digit from the plaintext would be added to a corresponding digit
from the key modulo 2 to produce the ciphertext. This process is
sometimes called noncarrying addition because each digit is added
separately without carrying over to the next digit. It is often designated
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by the symbol ⊕. For example, the digits 10010, which ordinarily rep-
resent 18, and the digits 01110, which ordinarily represent 14, would be
added:

1 0 0 1 0

⊕ 0 1 1 1 0

1 1 1 0 0

This gives 11100, which ordinarily represents 28—not the usual sum of
18 and 14. The big difference between this and the tabula recta polyal-
phabetic substitution ciphers we looked at earlier is that the addition is
modulo 2 instead of modulo 26.

Some of the systems that AT&T was using were equipped to auto-
matically send messages using a paper tape, which could be punched
with holes in 5 columns—a hole indicated a 1 in the Baudot code and no
hole indicated a 0. Vernam configured the teletypewriter to add (mod-
ulo 2) each digit represented by the plaintext tape to the corresponding
digit from a second tape punched with key characters. The resulting
ciphertext is sent over the telegraph lines as usual.

At the other end, Bob feeds an identical copy of the tape through
the same circuitry. Since 1 ≡ −1 modulo 2, subtraction modulo 2 is the
same as addition. Thus the same operation at Bob’s end subtracts the
key, and the teletypewriter can print the plaintext. Vernam’s invention
and its further developments became extremely important in modern
cryptography; we will see these ideas again in Sections 4.3 and 5.2.

In general, polyliteral ciphers trade off the advantage of fewer
distinct symbols for the disadvantage of longer messages. In some situ-
ations, such as holding torches, digital computers, steganography, and
telegraphs, the utility of this trade-off is obvious. In other situations it
may not be as clear why one would be willing to put up with the longer
messages. In the next section, however, we will see one big advantage
that can be gained from polyliteral encryption.

4.2 fractionating ciphers

The polyliteral ciphers we have been looking at are not very different
from simple substitution ciphers. The only trick to attacking them is
figuring out how many symbols correspond to each letter, which can
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be done fairly easily by just guessing and starting the attack. With the
right guess, Eve can do a frequency analysis just like simple substitu-
tion ciphers. In order to make these ciphers secure, something fancier
needs to be added. One possibility is simply to scatter some null symbols
throughout the message to disrupt the orderly division of the ciphertext
into groups. The symbols can be placed in prearranged positions, or, if
they are not otherwise used in the cipher, they can be distributed at
Alice’s whim and Bob will simply ignore them. This last technique
works well with polyliteral ciphers, since they use a smaller set of
symbols than the original message anyway.

Another possibility is to make different groups different lengths. An
example of this is the straddling checkerboard:

0 1 2 3 4 5 6 7 8 9

a b c d e f g

1 h i j k l m n o p q

2 r s t u v w x y z

The letters in the first row are encrypted with a single digit; the let-
ters in the other rows are encrypted with 2 digits each. Since there
are no 2-digit ciphertext equivalents that start with 3 through 9, it is
unambiguous when Bob should pick a letter in the first row as opposed
to one of the others.

Yet another possibility is to combine a polyliteral cipher with
another cipher in such a way as to split up the ciphertext groups. This
is often referred to as fractionation. The simplest thing to do is to per-
form a transposition after the polyliteral cipher, so that the symbols
corresponding to a single plaintext letter are no longer adjacent. Per-
haps the “most interesting and practical” of these fractionating product
ciphers was the cipher invented by the German officer Lieutenant (later
Colonel) Fritz Nebel and used by the German army duringWorldWar I.
The Germans called this cipher GedeFu 18, short for Geheimschrift der

Funker 1918, or Radio Operators’ Cipher 1918. The French, seeing a
bunch of cryptograms containing only the letters A, D, F, G, V, and X,
called it theADFGVX cipher. This system starts out with a 6×6 version
of the Polybius square, containing both letters and digits in a scrambled
order and labeled on the top and side with the letters ADFGVX. For
example:
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A D F G V X

A b 5 x q j c

D 6 y r k d 7

F z s l e 8 1

G t m f 9 2 u

V n g 0 3 v o

X h a 4 w p i

So to encrypt the name Zimmermann, Alice would write

plaintext: z i m m e r m a n n

ciphertext: FA XX GD GD FG DF GD XD VA VA

This was followed by a keyed columnar transposition. For instance,
if the keyword for this part of the cipher was germany, then we would
have

first second

ciphertext ciphertext

3 2 6 4 1 5 7

g e r m a n y

F A X X G D G G A F X D X G

D F G D F G D F F D D G G D

X D V A V A X V D X A A V X

and the final ciphertext would be

GFVAF DFDXX DADGA XGVGD X

A general method of breaking this cipher was not discovered un-
til after the war was over, and an outline was first published in 1925,
although during the war Allied cryptanalysts were able to break the ci-
pher when they could compare ciphertexts that came from plaintexts
with identical beginnings or endings or if the division into columns was
easily guessed. That makes the ADFGVX cipher easily one of the most
successful ciphers of World War I and one of the most difficult to break
of any practical cipher not requiring a machine of some sort.
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The reason that this cipher is so difficult to solve and the reason
it is in the chapter on computer ciphers is because it embodies one of
the two principles at the heart of all modern ciphers. These are now
known as diffusion and confusion, and they were given their modern
meanings by Claude Shannon. Shannon was an engineer and math-
ematician who is considered the founder of the field of information
theory. In defining these principles, he was concerned about statis-
tical attacks on a cipher. In a paper written in 1945 and declassified
and published in 1949, Shannon defined diffusion as the idea that sta-
tistical structures in the plaintext that depend on looking at only a
few letters at a time, such as letter frequency or digraph frequency,
should be “diffused” in the ciphertext into statistics that require look-
ing at long strings of letters. Shannon’s definition of confusion, on the
other hand, was the idea that given simple statistics of the ciphertext,
it should be very complicated to find the key. In particular, the ci-
pher should be resistant to known-plaintext attacks, since information
about the frequency of letters and words in English (or any other hu-
man language) always allows a certain amount of successful guessing of
plaintext.

The ADFGVX cipher does a reasonably good job of diffusion. The
columnar transposition generally sends the two ciphertext letters cor-
responding to each plaintext letter to widely different parts of the final
ciphertext, and thus any attempt to use letter frequency information to
solve the biliteral substitution cannot succeed until substantial amounts
of ciphertext rearranging is done. On the other hand, the usual tech-
niques of solving transposition ciphers from Sections 3.6 and 3.7 require
information about the original plaintext letters, such as whether they are
vowels or consonants and which ones fit into high-frequency digraphs.
This information is difficult to obtain before the substitution is solved.

On the other hand, Shannon’s aim is not completely satisfied, since
the plaintext letters are not truly diffused into a large number of cipher-
text letters but merely into two widely separated ones. The ADGFVX
cipher also exhibits rather good confusion, especially if the Polybius
square part of the key is chosen carefully. If care is taken to avoid
high-frequency letters clustering in the square, known-plaintext attacks
become very difficult.
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4.3 how to design a digital cipher:
sp-networks and feistel networks

Shannon himself did not invent any ciphers, but in the same paper
where he defined diffusion and confusion, he did outline a technique
for building ciphers that might possess these characteristics. In order to
talk about his ideas and, in general, about the sort of ciphers designed
for use in computers, it will be convenient to talk a little first about how
mathematicians think about functions. We already saw some glimpses
of this in Section 3.3.

You probably already think you know what a function is; you are
no doubt familiar with functions like f(x) = x2 and f(x) = sin x. The
first thing that pops into your head when you see one of these functions
is probably the graph of the function, as in Figure 4.1.

You are not alone: in elementary algebra and calculus—and, in
fact, in almost every mathematical field developed between the seven-
teenth and nineteenth centuries—the study of functions is closely tied
to the study of curves in the plane or, sometimes, surfaces in 3 or more
dimensions. Toward the end of the nineteenth century, however, mathe-
maticians began to think of functions in a somewhat more general way.
A function is simply something that “takes in” objects of one type and
“spits out” other objects, possibly of the same type and possibly not,
according to some definite rule. The rule may be a formula, a set of in-
structions, a table, or even a picture, as long as it is unambiguous and
always produces the same output from the same input.
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Figure 4.1. The graphs of f(x) = x2 and f(x) = sin x.
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For example, f(x) = x2 is a function that takes in real numbers and
spits out real numbers according to a formula. The Caesar cipher, f(P) =
“the letter P shifted 3 letters down the alphabet, wrapping around” is a
function that takes in letters and spits out letters, according to a set of
instructions. The Baudot code is a function that takes in letters and spits
out strings of binary digits according to a table. The permutation(

1 2 3 4
2 4 3 1

)
can be thought of as a function that takes in numbers between 1 and 4
(representing ciphertext positions) and spits out numbers between 1 and
4 (representing the plaintext letters that go in those positions), according
to a table, and so on.

Shannon proposed using a mixing function in ciphers to provide
diffusion and confusion. This is an idea that Shannon admits cannot be
defined precisely for ciphers. “Speaking loosely, however,” he says “we
can think of a mixing transformation as one which distributes any rea-
sonably cohesive region in the space fairly uniformly over the entire
space. If the first region could be described in simple terms, the second
would require very complex ones.” If this were a simple substitution ci-
pher, for instance, we would want plaintext letters near the beginning
of the alphabet to give ciphertext letters scattered in a complex way
through the alphabet. We would also want plaintext letters with high
probabilities to be scattered in a complex way, and so on. To achieve
diffusion, on the other hand, we want to operate on larger blocks of
letters. Shannon suggests a function of the form

F(P1P2 · · · Pn) = H(S(H(S(H(T(P1P2 · · · Pn)))))),
as shown in Figure 4.2, where T is some transposition acting on groups
of n letters, H is some Hill cipher on n-letter blocks that is not too
complicated, and S is a simple substitution cipher applied to each let-
ter of the block. Each step is simple, but it is perfectly believable that the
combination and repetition would provide good mixing properties.

We have not yet discussed the role of the key. In Shannon’s concep-
tion, F is not secret and does not involve a key, so there is no security
yet. However, this makes F particularly easy to perform using a com-
puter or other machine, which is important because F will be the most
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Figure 4.2. Shannon’s mixing function F.

complicated part of the cipher. Shannon goes on to say that while a
good mixing function provides good diffusion, we can add confusion by
extending the function to something like

Vk(F(Uk(P1P2 · · · Pn))),
as shown in Figure 4.3, where Uk and Vk are two relatively uncompli-
cated ciphers, say simple substitutions, which depend on a key k. The
idea is that some key information is applied immediately, which is
“mixed around” by the mixing function, adding confusion as well as
diffusion, and then more key information is applied. This last step does
not provide confusion, but it is necessary to keep Eve from immediately
undoing whatever operations were in the nonsecret function F. If she
could “unmix” the ciphertext in this way, then she would be left with a
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Figure 4.3. A Shannon cipher.

very easy cipher to solve. For even more security, this could be extended
with more repetition to

Wk(F2(Vk(F1(Uk(P1P2 · · · Pn))))),

as shown in Figure 4.4, and so on.
Shannon was considerably ahead of his time; cipher designers didn’t

really start thinking about his principles in a systematic way until the
1970s. Around this time people began thinking about applications for
computers outside the military and the government, and among these
was Horst Feistel. Feistel was born in Germany but fled the Nazi mil-
itary conscription and came to the United States in 1934. In 1944 he
became a US citizen and started working for the US Air Force Cam-
bridge Research Center on Identification: Friend or Foe (IFF) systems,
which were not precisely cryptographic but were closely related. Af-
ter that Feistel held a couple of jobs doing defense contract work at
nonprofit research centers, and in 1967 he joined IBM’s Watson Re-
search Center. Throughout this period Feistel continued to think about
ciphers for computers, but (perhaps because of NSA pressure) he was
not able to work on them until he reached IBM, which had a contract
with Lloyds Bank in Great Britain to provide them with some of the
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Figure 4.4. An even more secure Shannon cipher.

earliest automated teller machines. Obviously, it was necessary to en-
crypt the communications between the ATMs and the central bank to
prevent unauthorized transactions from taking place. Feistel’s group
eventually came up with two different schemes for creating a secure
computer cipher, both variations on Shannon’s scheme and both still
used today.

The one that resembles Shannon’s ideas most closely is now called
a substitution-permutation network, or SP-network. Like Shannon’s
scheme, it has a pattern of substitutions and transpositions (which are
really the same as permutations, as we mentioned in Section 3.3). Unlike
Shannon, instead of alternating simple polygraphic substitutions (Hill
ciphers) and more general monographic substitutions, with one larger
transposition, SP-networks alternate large transpositions with smaller
but still complicated polygraphic substitutions and usually throw in
something like a polyalphabetic substitution besides. Also, since these



124 • Chapter 4

S1

P

S2

K0

KeyPlaintext

Ciphertext

K1

S3 S4

S1

P

S2 S3 S4

S1 S2 S3 S4

K2

K3

Figure 4.5. The structure of a sample SP-network.

ciphers are designed for computers, they all act on patterns of binary
digits, or bits, rather than letters.

The easiest way to see what’s going on in a modern computer ci-
pher is usually with a diagram. A “standard” sort of modern SP-network
might look something like Figure 4.5. A fairly typical block size for a
modern cipher is 128 bits, so we’ll assume that there are 128 bits of
plaintext going in. The key might also be 128 bits or it might be larger.
This key is split up into parts according to some key schedule, which
could be as simple as just taking the first 128 bits, and the then the next
128, and so on, or it could be much more complicated. Some bits may
be used more than once and some might be added together or otherwise
transformed before use. At any rate, a series of 128-bit round keys K0,
K1, K2, . . . is eventually arrived at.
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� � � sidebar 4.1. digitizing plaintext � � �

You might be wondering just how the bits going into a digital

computer cipher represent plaintext. One could do this with the

5-bit Baudot code we mentioned in Section 4.1. A more modern

way is to use the American Standard Code for Information

Interchange, or ASCII, a 7-bit nonsecret encoding developed in

the 1960s. Seven bits instead of 5 gives 27 = 128 possibilities

instead of 25 = 32, which allows ASCII code to represent both

upper- and lowercase letters as well as digits, punctuation marks,

and other symbols. In addition, there are some combinations of

bits designated as “control characters”; they were originally

designed to make a computer do something, such as force a line

break or ring a bell, rather than to print on the screen. The

printable characters in ASCII are shown in Table 4.1.

Seven bits is considered unwieldy by modern designers of

computer hardware and software, who prefer powers of 2, like 2,

4, 8, 16, 32, and so on. Therefore, an extra bit is usually tacked

onto the beginning of an ASCII representation to make an even 8

bits. Sometimes this bit is used for error checking, sometimes it

indicates that the characters should be displayed a special way,

and sometimes it is just set to zero. Thus, if a cipher with a block

size of 128 bits is operating on plaintext represented with ASCII,

each block will ordinarily hold 16 characters.

As I write this, ASCII is in the process of being superseded

by encodings using 16 or even 32 bits, with the goal of eventually

encoding all the letters and symbols used by all the living and

dead languages of the world. Ciphers are also likely to move

to larger block sizes as computers get more powerful. More

importantly, modern ciphers are used in ways that make the

number of characters per block less important, as we will see in

Section 5.3.
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Table 4.1.
The printable ASCII characters

Decimal Binary Character Decimal Binary Character Decimal Binary Character
Numeral Encoding Numeral Encoding Numeral Encoding

32 0100000 [space] 64 1000000 @ 96 1100000 ‘
33 0100001 ! 65 1000001 A 97 1100001 a
34 0100010 " 66 1000010 B 98 1100010 b
35 0100011 # 67 1000011 C 99 1100011 c
36 0100100 $ 68 1000100 D 100 1100100 d
37 0100101 % 69 1000101 E 101 1100101 e
38 0100110 & 70 1000110 F 102 1100110 f
39 0100111 ’ 71 1000111 G 103 1100111 g
40 0101000 ( 72 1001000 H 104 1101000 h
41 0101001 ) 73 1001001 I 105 1101001 i
42 0101010 * 74 1001010 J 106 1101010 j
43 0101011 + 75 1001011 K 107 1101011 k
44 0101100 , 76 1001100 L 108 1101100 l
45 0101101 - 77 1001101 M 109 1101101 m
46 0101110 . 78 1001110 N 110 1101110 n
47 0101111 / 79 1001111 O 111 1101111 o
48 0110000 0 80 1010000 P 112 1110000 p
49 0110001 1 81 1010001 Q 113 1110001 q
50 0110010 2 82 1010010 R 114 1110010 r
51 0110011 3 83 1010011 S 115 1110011 s
52 0110100 4 84 1010100 T 116 1110100 t
53 0110101 5 85 1010101 U 117 1110101 u
54 0110110 6 86 1010110 V 118 1110110 v
55 0110111 7 87 1010111 W 119 1110111 w
56 0111000 8 88 1011000 X 120 1111000 x
57 0111001 9 89 1011001 Y 121 1111001 y
58 0111010 : 90 1011010 Z 122 1111010 z
59 0111011 ; 91 1011011 [ 123 1111011 {
60 0111100 < 92 1011100 \ 124 1111100 |
61 0111101 = 93 1011101 ] 125 1111101 }
62 0111110 > 94 1011110 ^ 126 1111110 ~
63 0111111 ? 95 1011111 _

The first step in the actual encryption is the polyalphabetic substi-
tution that I mentioned earlier. It adds the bits of the plaintext modulo
2 with the bits of the first round key, using noncarrying addition, just
like the teletypewriter system in Section 4.1. Then the bits are divided
up into a large number of small groups—Feistel suggested 32 groups of
4. Each group of 4 bits is passed through a (nonsecret) substitution
box, or S-box, which carries out a polygraphic substitution on the 4
bits that is as complicated to describe mathematically as possible—often
the designers just give a table and leave it at that. The S-boxes may all
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be the same or they may be different, and sometimes the S-boxes used
depend on the key in some way, but not necessarily. After the S-box,
the bits are rejoined and pass through a (nonsecret) permutation box,
or P-box, which performs some complicated permutation on the whole
block. Note the similarities to the ADFGVX cipher, which also combines
a smaller substitution with a large transposition.

Finally, the bits are added modulo 2 to the bits of the next part of
the round key and the cycle repeats for many, many rounds—perhaps
10 or 20, depending on how secure and how fast the designer wants the
cipher to be. As Shannon suggested, both the first and last operations
should involve adding the key; otherwise Eve can just undo them, since
everything else is essentially not secret. In order to decrypt, Bob merely
runs each stage of the cipher backward. As we saw in Section 4.1, sub-
tracting the round key modulo 2 is the same as adding it, and thus this
step works the same way backward as it does forward. We will see an
example of a substitution-permutation network when we look at the
Advanced Encryption Standard in Section 4.5.

The idea of a substitution-permutation network is to use the S-boxes
to provide confusion and diffusion 4 bits at a time and the P-boxes to
“spread it around” to the whole 128 bits. The complicated mathemati-
cal relation expressed in the S-boxes provides the confusion. To ensure
diffusion, the S-boxes are designed to produce what Feistel called an
“avalanche effect”; if any one bit of the input is changed from 0 to 1,
or vice versa, a large percentage of the output bits should be changed.
Modern cryptologists have quantified this as the strict avalanche cri-
terion: if any one input bit is changed and the others are held constant,
each output bit will change for half the values of the other input bits and
remain the same for the other half. Let’s take a small, 3-bit example:

input output

000 110
001 100
010 010
011 111
100 011
101 101
110 000
111 001
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For example, consider the case where the middle bit of the input is 0
and we want to know what happens to the last bit of the output. There
are 4 input cases: 000, 001, 100, and 101. The next table indicates what
happens in each case, with the bits we are focusing on in bold:

input changes to output changes to

000 010 110 010

001 011 100 111

100 110 011 000

101 111 101 001

As you can see, in two cases the output bit we care about changes and
in the other two, it doesn’t. You can check that the same thing will be
true if we pick any other input bit and any other output bit.

If we could simply create a 128-bit S-box that was mathematically
complicated and exhibited the strict avalanche criterion, then we would
have confusion and diffusion and be all set. But that’s not really prac-
tical, even with modern technology. Instead, once the S-boxes produce
several changed bits out of 1, we use the P-boxes to scatter the changed
bits throughout the whole block. Unlike S-boxes, large P-boxes are easy,
especially on a computer chip—all we need to do is move the wires
around. Then those changed bits go through more S-boxes and change
more bits, and so on. If the strict avalanche criterion holds in every
S-box, the P-boxes are carefully constructed, and enough rounds are
used, then in the end, changing one bit of the input plaintext will have
a 50% chance of changing every bit of the output ciphertext.

The other scheme which Feistel’s group came up with is now called
merely a Feistel network. Again, a diagram will probably be the most
useful, as in Figure 4.6. As in an SP-network, a key schedule is used to
determine a sequence of round keys. The plaintext bits are divided in
half, and in each round the right (according to the diagram) half of the
input bits are used to modify the left half. First, the right half of the
input bits passes through a round function f, which typically involves
one or more S-boxes and/or P-boxes and adding the bits of the round
key modulo 2. The bits of the output of the round function are then
added modulo 2 to the left half of the input bits. Then the 2 halves are
swapped and the round is repeated a large number of times. Again, 10
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Figure 4.6. The structure of a Feistel cipher.

to 20 rounds are typical. There is no swap at the end of the last round—
leaving it out doesn’t affect the security and makes decryption more
convenient.

One of the interesting things about Feistel networks is that de-
cryption actually goes in the same direction as encryption, rather than
backward (except for the key schedule). This is due to the fact that the
bits of the output of the round function are added on modulo 2 rather
than used directly, and addition modulo 2 is the same as subtraction
modulo 2. You can see if you put the encryption diagram from Figure 4.6
on top of the decryption diagram that in the middle there will be two
identical additions modulo 2 in a row, which thus cancel out. Once those
are canceled out, the additions above and below them are effectively in a
row, and those are also identical, so they cancel out, and so on. Because
the S-boxes in the round function don’t have to go backward, there is
more freedom to choose them to have good properties, like avalanche.
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In fact, it is possible for the S-boxes to have a different number of inputs
and outputs. Likewise, the P-boxes don’t have to be proper permuta-
tions; they can be expansion functions or compression functions like we
saw in Section 3.3.

Just like for SP-networks, the confusion in a Feistel network is
provided by the S-boxes in the round function. The P-boxes then pro-
vide diffusion through each half of the bits, and the addition modulo 2,
swapping, and repeating spread the diffusion and confusion to the other
half. The most famous example of a Feistel network cipher is the Data
Encryption Standard, which we will meet in the next section.

4.4 the data encryption standard

Feistel’s research group and its successors at IBM produced at least 5
ciphers from 1971 to 1974, all of which very confusingly seem to have
been called Lucifer. One of the early versions was used in the IBM 2984
automated teller machine. A later version became known internally as
the DSD-1, and this was the one that the group was working on when
the National Bureau of Standards (NBS, now the National Institute of
Standards and Technology, or NIST) starting soliciting proposals for a
new national standard encryption algorithm.

The DSD-1 was the only serious competitor for the new standard,
which became known as the Data Encryption Standard, or DES, but
some controversial changes were made along the way. The NSA had not
wanted to design the new standard cipher, fearing that releasing any of
its design work to the public would already give away too much in-
formation about what the agency knew and how it worked. However,
when the NBS requested the NSA’s help to evaluate the algorithm’s se-
curity, the NSA was presumably happy to agree. Exactly what happened
next is not clear, because the NSA insisted that everyone involved be
sworn to secrecy. What is known is that the length of the key, which
Feistel had intended to be 128 bits, was reduced to 64 and then to 56. In
addition, the tables used in the S-boxes were changed from the original
design. According to people in the IBM group, the reduction from 128
bits to 64 bits was done for purely practical reasons—the circuitry that
implemented the DES algorithm was supposed to fit on a single chip and
at the time, working with 128 bits on a chip would certainly have been
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difficult. Furthermore, even 64 bits meant there would be 264 different
keys. A single computer trying a million keys per second (which would
have been quite fast in the 1970s) would still take around 300,000 years
to complete a brute force attack on a 64-bit key.

The reduction from 64 bits to 56 bits was much more controver-
sial. That cut the time to complete a brute-force attack down to around
1000 years on a single computer, or 1 year on a thousand computers,
and that seemed within the range of possibility for an organization like
the NSA. Even some people at IBM suspected that the NSA had in-
sisted that the key size be reduced so that they might have a chance at
cracking the cipher. The head of the product-development group insisted
that the reason was, rather, an IBM internal specification that required
that the 8 bits taken away from the key be used for an error-checking
mechanism. According to a book published by the NSA’s Center for
Cryptologic History in 1995, the NSA had actually pushed for a 48-bit
key and the 56-bit key size was a compromise. Whether this means that
the NSA could have broken DES at the time may never be known.

As far as the S-boxes were concerned, the NSA seems to have made
them more secure, rather than less. In 1990, two academic researchers
announced that they had discovered a differential attack on DES,
which compares ciphertexts that come from two or more closely re-
lated plaintexts—actually, this particular attack uses about 247 plaintexts,
which is an awful lot but still is potentially quicker than a brute-force
search. They also discovered that DES seemed particularly resistant to
differential cryptanalysis. After hearing about this announcement, one
of the IBM researchers revealed that in 1974 the S-boxes in fact had
been redesigned, with or without NSA help, to withstand exactly this
attack. It is still not known for certain whether the NSA knew about the
technique used in the differential attack before 1974 and, if so, whether
they helped the IBM researchers discover it. At any rate, the NSA de-
cided that the technique was too powerful to reveal to the world at large
and made sure that both the technique and the design considerations
used to make it difficult were kept secret until they were rediscovered
almost 20 years later.

So what is the DES algorithm? It’s a Feistel network, like in
Section 4.3, with the small addition of a P-box at the very beginning
of the cipher and its inverse at the very end. As we remarked earlier,
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Figure 4.7. Outline of DES Encryption.

nonsecret transformations at the very beginning and end of a cipher
don’t affect the security, since Eve can just undo them. Apparently the
P-boxes are merely there to make the data easier to handle on the origi-
nal chip. The blocks are 64 bits long and there are 16 rounds. Figure 4.7
shows the cipher in broad outline.

The key schedule involves P-boxes that do rotations, which are a
simple type of permutation that we mentioned in Section 3.8. It also
uses a compression function, like we discussed in Section 3.3, which
picks out some of the 56 bits and rearranges them to get one of the 16
round keys of 48 bits each, as shown in Figure 4.8. Each round key uses
a different amount of rotation before the compression function, which
makes each round key different.



Ciphers and Computers • 133

Compression
function

Rotation

Subkey 16
(48 bits)

Rotation

Compression
function

Rotation

Subkey 15
(48 bits)

Rotation

… …

Compression
function

Rotation

Subkey 2
(48 bits)

Rotation

Permutation

Compression
function

Rotation

Subkey 1
(48 bits)

Key (56 bits)

Rotation

Figure 4.8. DES Key Schedule.

Finally, we need to look at the DES round function, shown in
Figure 4.9. This involves an expansion function, also discussed in
Section 3.3, which rearranges the 32 bits in the right half of the block
and also repeats some of them to get 48 bits, which can be added to the
bits of the round key. Then the bits are divided into 8 groups of 6 bits
each, and each group is passed through one of the famous DES S-boxes—
each of the 8 is different. This, as we have said, provides the confusion.
We also mentioned in Section 4.3 that in a Feistel network the S-boxes
can have a different number of output than inputs, and this is the case
in DES—each S-boxes takes in 6 bits and puts out 4. This gives us 32 bits
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Figure 4.9. DES Round Function.

again, which then go through an ordinary P-box to provide diffusion
and finish the round.

Despite the concerns about the key size, DES held up remarkably
well as a cryptographic standard—it lasted more than 20 years before
being definitively shown to be insecure. As we mentioned, the differen-
tial attack on DES was rediscovered in 1990, but the number of carefully
arranged plaintext-ciphertext pairs it requires is not really considered
practical. In 1993 another attack, called linear cryptanalysis, was discov-
ered. This is also a known-plaintext attack, but the plaintext-ciphertext
pairs don’t have to be carefully chosen. However, it still requires an
average of 243 pairs and considerable computation. This attack does not
seem to have been known to the DES designers. In 1997–98 the Elec-
tronic Frontier Foundation decided to see whether a concerted group
with a reasonable budget could break DES by brute force. They de-
signed and built a custom computer using 1728 custom chips. The whole
process, including the design and manufacturing time, took 18 months
and cost less than $250,000, plus the volunteer time of fewer than 10
part-time people on the core staff and a separate short volunteer project
for the software. This machine took about 56 hours to crack a 56-bit
DES key, although they were somewhat lucky—an average search would
have taken about twice as long. Furthermore, the system was scalable,
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in that two machines of the same size and cost could be used to break
DES in half the time. At this point it was generally acknowledged that
DES was breakable.

4.5 the advanced encryption standard

On September 12, 1997, the National Institute of Standards and Technol-
ogy announced a “Request for Candidate Algorithm Nominations for
the Advanced Encryption Standard.” The Advanced Encryption Stan-
dard, or AES, was intended to replace DES as the new government
cipher standard. Almost everything about the process of choosing the
AES cipher was different from the DES process. The key size and block
size were specified up front. The algorithm was required to work with
multiple key sizes (128, 192, and 256) in order to allow for future as
well as present security needs. The criteria on which the submissions
would be judged were specified: security, cost, flexibility, suitability
for both hardware and software, and simplicity. Foreign nationals were
allowed and even invited to participate, both as submitters and review-
ers. And most importantly, the entire evaluation would be considered in
full public view. A series of three public conferences would be held, at
which the designers of the candidate ciphers would be invited to make
presentations, NIST scientists and outside experts would present their
analyses of the candidates, and the public at large was invited to watch,
ask questions, and make comments.

By the due date of June 15, 1998, 21 ciphers had been submitted, of
which 15 were judged to have met the minimum specified requirements.
Ten of the 15 had been primarily developed outside the United States,
and all but one had at least one non-US national on the design team. In
August 1999, NIST narrowed the field to 5 finalists, and on October
2, 2000, NIST announced that the winner was a submission known as
“Rijndael” by two Belgian cryptographers, Joan Daemen and Vincent
Rijmen. The standard took effect on May 26, 2002.

As I mentioned in Section 4.3, AES is basically an SP-network. The
blocks are 128 bits long and are generally thought of as being broken up
into a 4 × 4 square of 8-bit groups, as in Figure 4.10. The key can be
128, 192, or 256 bits long, and the number of rounds depends on the key
size—10 rounds for 128 bits, 12 for 192, and 14 for 256.
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Figure 4.10. Overview of AES.

For simplicity, I’m going to describe only the key schedule for the
version of AES with a 128-bit key, which is not only simplest, but also
the most common as of this writing. The first round key is just the same
as the original cipher key. From then on, to get the next round key, the
previous round key is passed through a function that involves a rotation
P-box, a set of identical S-boxes (about which more later), and a lot of
addition modulo 2, including using a “round constant,” which is just like
it sounds—it depends on the round but nothing else. See Figure 4.11.

AES starts with adding the round key as usual for SP-networks.
Then each 8-bit group passes through an identical S-box, for confusion.
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After the S-boxes comes the diffusion. The designers of AES, unlike
Feistel, thought that one gigantic 128-bit P-box was too much. There-
fore, they made the diffusion work in 2 steps. Remember that the 8-bit
groups are thought of as arranged in a 4 × 4 square. The first diffusion
step is a set of P-boxes that rotate each row by a different number of
8-bit groups. This takes care of what the designers called dispersion,
which is a process of moving bits that start out near each other to posi-
tions that are widely separated. The second diffusion step is not quite a
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permutation. It performs a Hill cipher encryption on each column using
a fixed key and a special multiplication which I am going to talk about
shortly. One advantage of using a Hill cipher, in which every bit has a
chance to influence every other bit, is that it is possible to prove that
every bit has to be influenced by a large number of S-boxes. This makes
it difficult to carry out differential attacks and linear cryptanalysis. At
the end of each round, the new round key is added.

Now we’re ready to talk about the design of the AES S-box—there’s
only one, so it better be a good one! Remember that an S-box is usually
given as a table. There are basically three ways of choosing the entries
in the table: they can be randomly selected, “human made,” or “math
made.” The DES S-boxes were human made: the designers thought hard
about what criteria they wanted the tables to fit and then searched until
they found entries that succeeded. The AES S-boxes, on the other hand,
are basically math made. Remember that the S-box function is supposed
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to be complicated mathematically in order to provide confusion. The
AES designers deliberately decided to choose a function that is very
complicated when looked at from the level of bits but not so complicated
when looked at in a different mathematical way.

The math that the AES S-boxes use is modular arithmetic, but it’s
modular arithmetic using polynomials. Remember that pretty much
everything in AES works with 8-bit groups. We start by turning the
8-bit groups into polynomials:

01010111 → 0x7 + 1x6 + 0x5 + 1x4 + 0x3 + 1x2 + 1x+ 1

= x6 + x4 + x2 + x+ 1,

10000011 → 1x7 + 0x6 + 0x5 + 0x4 + 0x3 + 0x2 + 1x+ 1

= x7 + x+ 1.

To add the groups we just add the polynomials modulo 2, which
turns out to be just what we would have done to add two groups of bits
anyway:

01010111 ↔ x6 + x4 + x2 + x+ 1

+ 10000011 ↔ + x7 + x+ 1

11010100 ↔ x7 + x6 + x4 + x2 + 2x+ 2

= x7 + x6 + x4 + x2.

To multiply the groups we multiply the polynomials modulo 2:

01010111 ↔ x6 + x4 + x2 + x+ 1

× 10000011 ↔ × x7 + x+ 1

???????? ↔ x13 + x11 + x9 + x8 + 2x7 + x6 + x5 + x4

+ x3 + 2x2 + 2x+ 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1.

But now we have a problem, because we have too many polynomial
coefficients to turn back into an 8-bit group. This should remind you of
a problem we’ve dealt with before, when we needed to turn a ciphertext
number larger than 26 into a ciphertext letter. The solution there was to
wrap around using the number 26. The solution here is the same, only
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we need to wrap around using a polynomial of degree 8—in other words,
the term in the polynomial with the largest exponent will be x8. If we
divide our result by a polynomial of degree 8 and take the remainder, it
will have degree 7 or less. Then we can turn it back into an 8-bit group;
remember we need to make room for the constant coefficient also, so 8
bits means degree 7 or less.

Which polynomial should we choose? We could just use x8, but we
will see in a bit that we want to use a prime polynomial, also known
as an irreducible polynomial. The polynomial x8 isn’t prime, since it’s
x×x×x×x×x×x×x×x. The designers of AES consulted a published
list of polynomials of degree 8 that are prime modulo 2 and took the first
one, which turned out to be x8 + x4 + x3 + x+ 1.

The simplest way to reduce modulo a polynomial is still to divide
by it and take the remainder, working modulo 2 the entire time, and so
we can finish our example:

x5 +x3

x8 + x4 + x3 + x+ 1

)
x13 +x11 +x9 +x8 +x6 +x5 +x4 +x3 +1

−x13 −x9 −x8 −x6 −x5
x11 +x4 +x3
−x11 −x7 −x6 −x4 −x3

−x7 −x6 +1

The remainder is

−x7 − x6 + 1 ≡ x7 + x6 + 1 modulo 2,

so

01010111 ↔ x6 + x4 + x2 + x+ 1

× 10000011 ↔ × x7 + x+ 1

x13 + x11 + x9 + x8 + 2x7 + x6 + x5

+ x4 + x3 + 2x2 + 2x+ 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1,

11000001 ← ≡ x7 + x6 + 1 modulo x8 + x4 + x3 + x+ 1 modulo 2.
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Now we know how to add and multiply modulo a polynomial
modulo 2. Since we are working modulo 2, subtraction is the same as
addition. That just leaves division. The reason we picked a prime poly-
nomial for the modulus is the same as when we worked modulo a prime
number: every nonzero polynomial has a multiplicative inverse, and we
can compute it using the Euclidean algorithm just like for numbers.

For instance, to find the multiplicative inverse of x5 + x4 + x2 + x,
we compute the greatest common divisor of x5 + x4 + x2 + x and x8 +
x4 + x3 + x + 1, reducing modulo 2 whenever convenient. We confirm
that the GCD is 1, and rewrite each line to eventually discover that

1 ≡ (x3 + x+ 1)× (x8 + x4 + x3 + x+ 1)

+ (x6 + x5 + x2 + x)× (x5 + x4 + x2 + x) modulo 2,

so

1 ≡ (x6 + x5 + x2 + x)× (x5 + x4 + x2 + x)

modulo x8 + x4 + x3 + x+ 1 modulo 2,

giving

x5 + x4 + x2 + x = x6 + x5 + x2 + x

modulo x8 + x4 + x3 + x+ 1 modulo 2,

or in terms of bits,

00110110 = 01100110.

AES uses this polynomial arithmetic in two places. The first is to do
the multiplications in the Hill cipher step. The second is in the design of
the S-box. The S-box function basically has just two steps. The first is to
take the multiplicative inverse of the 8-bit group using the procedure we
just went through. (If all 8 bits are 0, then we get the zero polynomial,
which doesn’t have an inverse, so we just leave it alone.) The second
step is to separate the 8 bits and perform a specified 8-by-8 affine Hill
encryption on them. And that’s it.
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As I’ve mentioned before, in practice the S-box function is usually
specified by a table that can be built into the cryptographic hardware
and software so that the computations don’t have to be done over and
over—especially the multiplicative inverse, which, as you can see, is
somewhat time consuming. Nevertheless, the fact that the mathemat-
ical structure is there makes it easier to analyze the resistance of AES
to certain types of attacks. The polynomial structure makes it diffi-
cult to use differential and linear attacks against AES, as I mentioned
earlier, because these attacks only “know about” bits and not polynomi-
als. On the other hand, the affine Hill step of the S-box is intended to
make it hard to attack AES using polynomial techniques, since this step
acts on the individual bits and doesn’t respect the polynomial struc-
ture. Ever since the original AES competition, there has been some
concern that this step is not enough to protect against attacks using
the “high-level” structure of AES. In 2002 an attack on AES called XSL
(eXtended Sparse Linearization) was announced that uses, among other
things, this structure. Although the consensus now seems to be that the
XSL attack is not better than brute force, it is still possible that attacks
based on the polynomial structure of AES may become important in
the future.

In 2009 and 2010 several papers appeared describing possible
known-key and related-key attacks on AES. Since these require know-
ing some or all of the key before the attack starts, they are not directly
applicable against a well-designed implementation of AES as it was de-
signed to be used. However, history shows that ciphers do not always
get used in the way they were intended. In addition, these attacks might
(or might not) be signs of weaknesses that could be exploited in more
conventional attacks.

In 2011, a more standard attack on AES was announced, which is
agreed to be better than brute force, although not by very much. It is
the equivalent of reducing a 128-bit key to a 126-bit key, which would
still take an unreasonably long time to break using any computers we
know of. Also, the attack requires knowing the plaintexts corresponding
to 288 carefully chosen ciphertexts, which seems difficult to arrange in
practice. Nevertheless, this seems to be the most serious attack on AES
known as of this writing.
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4.6 looking forward

This is actually about as far forward as we are going to pursue ciphers
based on SP-networks, Feistel networks, and similar ideas in this book.
There is certainly still active research going on in these areas, though.
Presumably, AES will eventually need to be replaced, and cryptogra-
phers are already thinking about ciphers that might succeed it. The
original expectations were that the new standard should last at least
30 years, but NIST is supposed to reevaluate AES every 5 years to see if
it is still acceptable. So far, no serious problems with AES have surfaced,
but everyone wants to be ready just in case.

Cryptographers are also interested in finding encryption methods
that have special properties, such as making some aspects of the data
secret but not others. In format-preserving encryption, the goal is
for data of a certain type to still look like the same type after encryp-
tion. For example, an encrypted sound file should still be playable as a
sound file on a computer. It will probably sound like noise, but it won’t
cause an error message. Similarly, if a database was originally set up to
hold names in some fields and credit-card numbers in other fields, then
after encryption the encrypted names should still fit in the name fields
and the encrypted numbers should still fit in the number fields. This
idea goes back at least as far as a National Bureau of Standards docu-
ment from 1981, but early methods were very inefficient. In 2013, after
several proposals from researchers, NIST published a draft proposal for
a national standard incorporating three of the most efficient suggested
methods. Unfortunately, a report from April 2015 indicates that one of
the three methods was not as secure as previously thought.

An even more exciting idea is homomorphic encryption. The goal
here is for Alice to be able to encrypt her data and store it on Bob’s com-
puter. She can ask Bob to manipulate the encrypted data and return an
encrypted answer without having to give Bob the ability to decrypt the
data. For example, Alice could ask Bob to add up a column of numbers
in an encrypted spreadsheet without him ever finding out what either
the numbers or the total were. Or, she could ask Bob to find all the
names in a list that begin with A without having to worry about the
fact that diffusion will cause A to be encrypted differently, depending



144 • Chapter 4

on the other letters in the name. This would have great implications
for storing financial and other sensitive data in the cloud, as well as for
other applications like electronic vote counting.

Like format-preserving encryption, the idea of homomorphic en-
cryption goes back to the early days of computer ciphers, at least as far
back as 1978. The first actual fully homomorphic system, one that could
perform arbitrary operations on data, was not invented until 2009. Early
systems were much too slow to be practical, but there have been ma-
jor advances in both speed and technique since then. Two government
research agencies have committed more than $20 million to researching
practical solutions to the problem. And as of 2013, at least one company
was hoping to have a solution ready to market by 2015, although it has
not yet appeared as of this writing.

Efforts to find new attacks on AES are continuing, both in public
and in secret government projects. In 2013, the NSA contractor Edward
Snowden released to journalists a large number of classified documents
that he had taken from the NSA computer system. Some of these dealt
with NSA attempts to read encrypted communications, although most
of their techniques had to do with finding ways around the encryption
rather than breaking it outright. One excerpt published in Der Spiegel

caused some fuss by noting that

Electronic codebooks, such as the Advanced Encryption Standard, are

both widely used and difficult to attack cryptanalytically. The NSA has

only a handful of in-house techniques. The TUNDRA project investi-

gated a potentially new technique—the Tau statistic—to determine its

usefulness in codebook analysis.

A closer examination of the full document reveals that this was a
summer project for undergraduate students interested in future work
at the NSA, so it is not clear how much of a threat this project really
is. Journalists are still sorting through the Snowden documents, so it is
possible that more information about the “handful of in-house tech-
niques” may come to light in the future.



5
Stream Ciphers

5.1 running-key ciphers

The ciphers we have discussed so far, classical and modern, are all ba-
sically block ciphers. They break the plaintext up into relatively large
blocks, which might be one or more letters or one or more bits. Then
what happens to each block is independent of what happens to the
blocks before or after. The alternative is a stream cipher, where let-
ters, bits, or small blocks are encrypted one at a time, and the result of
each encryption might depend on what happened during previous en-
cryptions. This has several possible advantages. For one thing, it is very
convenient in situations where you do not have any idea ahead of time
whether the plaintext is going to be long or short and you don’t want
to worry about transmitting padding. Digital wireless communication
is a good example of this. For another, diffusion is almost automatic,
and because operations that contribute to confusion can pile up over the
course of the encryption, it is possible to achieve good confusion using
simple, fast operations.

The first steps on the road to stream ciphers came out of the keyed
polyalphabetic ciphers that we looked at in Section 2.4. It became clear
early on that the shorter the keyword or keyphrase was, the easier it was
to break the cipher. Most early cryptographers seem to have been under
the opinion that there was a “sweet spot” of no more than a sentence
or so, beyond which making the key longer caused more trouble than it
was worth. As cryptanalytic techniques improved, it became clear that
any repetition of the key could be exploited to break the cipher, as we
saw in Chapter 2. By the end of the nineteenth century, it had become
common to suggest the use of a keytext that could be made as long as
the plaintext—for example, the text starting on an agreed-on page of a
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common book. Using the tabula recta cipher from Section 2.4, we could
have

keytext: d o r o t h y l i v e d i n t h e
plaintext: a s l o w s o r t o f c o u n t r
ciphertext: E H D D Q A N D C K K G X I H B W

keytext: m i d s t o f t h e g r e a t k a
plaintext: y s a i d t h e q u e e n n o w h
ciphertext: L B E B X I N Y Y Z L W S O I H I

keytext: n s a s p r a i r i e s w i t h u
plaintext: e r e y o u s e e i t t a k e s a
ciphertext: S K F R E M T N W R Y M X T Y A V

keytext: n c l e h e n r y w h o w a s a f
plaintext: l l t h e r u n n i n g y o u c a
ciphertext: Z O F M M W I F M F V V V P N D G

keytext: a r m e r a n d a u n t e m w h o
plaintext: n d o t o k e e p i n t h e s a m
ciphertext: O V B Y G L S I Q D B N M R P I B

keytext: w a s t h e f a r m e r s w i f e
plaintext: e p l a c e
ciphertext: B Q E U K J

Even polyalphabetic ciphers with repeating keys have caused many
a cryptanalyst to throw up their hands and look for something easier.
These running-key ciphers, where the key does not repeat, are even
more difficult—but not impossible—to break.

There are two basic situations. One is if Eve has several messages
encrypted with the same running key. The other, harder, situation is if
she has only a single message. If Eve has reason to suspect that several
messages were encrypted with the same key, she can test this using the
kappa test from Section 2.5. If it comes up negative, Eve should consider
the possibility that the texts were encrypted using the same key text but
starting in different places:
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keytext 1: d o r o t h y l i v e d i n t h e m i
plaintext 1: a s l o w s o r t o f c o u n t r y s
ciphertext 1: E H D D Q A N D C K K G X I H B W L B
keytext 1: l i v e d i n t h e m i

plaintext 2: m o w g l i w a s f a r
ciphertext 2: Y X S L P R K U A K N A

keytext 1: d s t o f t h e g r e a t k a n s a s
plaintext 1: a i d t h e q u e e n n o w h e r e y
ciphertext 1: E B X I N Y Y Z L W S O I H I S K F R
keytext 1: d s t o f t h e g r e a t k a n s a s

plaintext 2: a n d f a r t h r o u g h t h e f o r
ciphertext 2: E G X U G L B M Y G Z H B E I S Y P K

keytext 1: p r a i r i e s w i t h u n c l e h e
plaintext 1: o u s e e i t t a k e s a l l t h e r
ciphertext 1: E M T N W R Y M X T Y A V Z O F M M W
keytext 1: p r a i r i e s w i t h u n c l e h e

plaintext 2: e s t r u n n i n g h a r d a n d h i
ciphertext 2: U K U A M W S B K P B I M R D Z I P N

keytext 1: n r y w h o w a s a f a r m e r a n d
plaintext 1: u n n i n g y o u c a n d o t o k e e
ciphertext 1: I F M F V V V P N D G O V B Y G L S I
keytext 1: n r y w h o w a s a f a r m e r a n d

plaintext 2: s h e a r t w a s h o t i n h i m h e
ciphertext 2: G Z D X Z I T B L I U U A A M A N V I

keytext 1: a u n t e m w h o w a s t h e f a r m
plaintext 1: p i n t h e s a m e p l a c e
ciphertext 1: Q D B N M R P I B B Q E U K J
keytext 1: a u n t e m w h o w a s t h e f a r m

plaintext 2: c a m e t o t h e c a v e a s t h e e
ciphertext 2: D V A Y Y B Q P T Z B O Y I X Z I W R

keytext 1: e r s w i f e
plaintext 1:
ciphertext 1:
keytext 1: e r s w i f e

plaintext 2: v e n i n g m
ciphertext 2: A W G F W M R
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As in Section 2.5, when the ciphertexts are correctly lined up then the
kappa test index of coincidence should be closest to 6.6%.

Once Eve has identified a series of ciphertexts that were enciphered
by the same key, she can superimpose them (correctly lined up, of
course), as in Section 2.6. Unfortunately for her, she cannot take ad-
vantage of the repetition of the key to make the columns longer. If she
has many messages enciphered with the same key, then this is not nec-
essarily a problem, and a letter frequency analysis can often be made to
work. Alternatively, if there are fewer messages but Eve knows which
types of ciphers the columns are encrypted with, she could just do a
brute-force attack as in Section 2.6. If there are too few messages, how-
ever, there may not be enough data in each column. Now in a long
message, there should be columns that can be combined, and in fact lots
of them—in our example, there were 11 columns that were encrypted
with the key letter a, and all of those columns could be combined, if Eve
knew where they were. Luckily for her, there is one more of Friedman
and Kullback’s index of coincidence tests that will help, namely, the chi
test, or cross-product sum test.

You might recall that the phi test checks to see if one ciphertext
was encrypted monoalphabetically, and the kappa test checks to see if
two ciphertexts were encrypted with the same polyalphabetic key. The
chi test checks to see if two ciphertexts were encrypted with the same
monoalphabetic key. We first use the phi test to make sure that each ci-
phertext was encrypted monoalphabetically. Then the basic idea is that
if we lump the two ciphertexts together, the result should still look like a
monoalphabetic encryption, and we can check this using the same tech-
nique as in the phi test. Alternatively, Kullback showed algebraically
that once you had done the phi test on each ciphertext individually,
using the phi test on the combined ciphertexts was equivalent to calcu-
lating the cross-product sum of the two ciphertexts. This is computed
by taking the chance that you will pick an A out of the first ciphertext
times the chance that you will pick an A out of the second ciphertext,
plus the same thing for B, plus the same thing for C, and so on. If this
sum is approximately equal to 6.6%, then the index of coincidence of the
two ciphertexts together will also be approximately 6.6%, so they were
encrypted with the same key.

For example, suppose Eve has the ciphertexts in Table 5.1.



Table 5.1.
A series of ciphertexts encrypted with the some running key

column: I II III IV V VI VII

ciphertext 1: Z Q K I Q I G
ciphertext 2: G C Z B J F R
ciphertext 3: H N T V T B P
ciphertext 4: J X M U U U S
ciphertext 5: G W J X N X O
ciphertext 6: Z Q K V Q F Q
ciphertext 7: Y Y U N Y M S
ciphertext 8: Y N G W M J G
ciphertext 9: Z Q K F F X H
ciphertext 10: U O Z B J G Z
ciphertext 11: S J T N M J Q
ciphertext 12: V J V Y W X W
ciphertext 13: M X Z I G W W
ciphertext 14: G C Z B J X W
ciphertext 15: U O Z B J X D
ciphertext 16: V X C X J W O
ciphertext 17: G A S M Y M S
ciphertext 18: B X E U L J K
ciphertext 19: O Q K U W I W
ciphertext 20: Z Q K U U U Z
ciphertext 21: H J X L J Q Q
ciphertext 22: U O C U W M C
ciphertext 23: Z Q K M M N D
ciphertext 24: C J Y U G F B
ciphertext 25: Z Q K D T Q Z
ciphertext 26: K W J I K Y V
ciphertext 27: Y R R P J W G
ciphertext 28: O B Z L N P S
ciphertext 29: V R K W J X C
ciphertext 30: G W J F F X H

Most common letter: Z Q K U J X S
Corresponding key: u l f p e s n

Chi-test value with column I: 0.018 0.072 0.037 0.038 0.023 0.058
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If Eve takes the most common ciphertext letter from each column
and assumes that it corresponds to plaintext e, then she gets the key
letters shown. The chi-test values indicate that columns I and III are
most likely encrypted with the same key. Decrypting the two columns
with various keys gives the following:

column key result frequency sum

I u elmoleddezxarlzalgtemzehepdtal 0.060

I f tabdatsstompgaopavitbotwtesipa 0.061

III u peyropzlpeyaeeehxjppchpdpowepo 0.053

III f etngdeoaetnptttwmyeerwesedlted 0.076

As you can see, f gives a marginally better result for column I but a
considerably better result for column III. Given that the chi test suggests
that they have the same key, that is strong evidence that the key for both
is f. Proceeding in this way, Eve can see that columns V and VI are also
encrypted with the same key, and that the final running key is “fifteen.”

� � � sidebar 5.1. we have all been here before � � �

When you got to the part of this book about the contact method,

in Section 3.4, you might have wondered about something. We

said there that it was more accurate to add the logarithms of the

digraph frequencies than the frequencies themselves, but earlier,

when we reduced a polyalphabetic ciphertext to monoalphabetic

terms in Section 2.6, we just went ahead and added the terms. Is

there something that makes the two situations different?

It turns out that there is. In the case of reduction to

monoalphabetic terms, we have some extra information. We

know the phi-test index of coincidence of the set of letters we are

working with, which should be about 0.066 if we are doing the

technique correctly. We also know the index of coincidence that

we are looking for, namely, 0.066 for English plaintext. That

should remind you of the situation we have when using the chi

test from this section, and in fact the frequency sum from

Section 2.6 is equivalent to the chi test.
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To see why, it will be easiest to set up some equations.

Suppose we have a set of n suspected plaintext letters with na a’s,

nb b’s, and so on. Let fa, fb, and so on, be the frequencies of these

letters in English text. Then, when we add up the frequencies, we

will be adding fa na times, fb nb times, and so on. So the sum of

the frequencies of the set we have will be

nafa + nbfb + · · · + nzfz.

Now imagine doing a chi test on the suspected plaintext

letters and a large number of real plaintext letters. The chance of

picking the letter a (for instance) out of the suspected plaintext

is na/fa, and the chance of picking the letter a out of the real

plaintext is fa. Continuing like this, we see that the chi-test index

of coincidence for these two texts will be

na

n
fa + nb

n
fb + · · · + nz

n
fz,

which is the same as the sum of the frequencies divided by n. If

the number of letters is the same, comparing the frequency sums

gives us the same result as comparing the chi-test values.

But does this test do what we want? Remember that the

chi test checks to see if two texts are encrypted with the same

monoalphabetic cipher. We know what cipher the hypothetical

real plaintext was encrypted with—it’s the trivial cipher! So, if the

chi-test value is good, that means that our suspected plaintext was

also encrypted with the trivial cipher; in other words, it’s also

plaintext. And that’s what we wanted to test.

These techniques so far work only if Eve has multiple messages en-
crypted with the same key. What if Eve has only a single message? This
is the second basic situation I mentioned earlier. It would seem that there
is not enough frequency information even to get started. However, there
is one set of frequency information that we have not used, and that is
the frequency of letters in the key. Since we have been picking key texts
from common books, we should expect the letter frequency distribution
in those texts to be more or less the same as in our plaintexts.
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Just for variety, let’s suppose now that Eve knows that Alice and
Bob are using a tabula aversa cipher table instead of the tabula recta
that we have been assuming. In this table, the ciphertext numbers are
the key numbers minus the plaintext numbers modulo 26, so we have
C ≡ k− P ≡ 25P+ k modulo 26. The table looks like this:

a b c d e f g h · · · s t u v w x y z

z Y X W V U T S R · · · G F E D C B A Z

a Z Y X W V U T S · · · H G F E D C B A

b A Z Y X W V U T · · · I H G F E D C B

c B A Z Y X W V U · · · J I H G F E D C
...

...

x W V U T S R Q P · · · E D C B A Z Y X

y X W V U T S R Q · · · F E D C B A Z Y

Suppose that Eve has an O in her ciphertext. According to the table,
the plaintext could be k and the key could be z, but that’s not espe-
cially likely if the key came from an average book. Or the plaintext
could be l and the key could be a, which is more likely. Or, there are 24
other combinations, which are mostly in between. Assuming the keytext
and the plaintext are chosen independently, which is likely, we can find
the probability of each combination by multiplying the probabilities for
the plaintext letter and the key letter. For example, the probability of l
and a is about .040 × .082 ≈ .0033, while the probability of k and Z
is about .0077 × .00074 ≈ .0000057. Note that we’re going to need to
use more accurate numbers for the low-frequency letters than appear in
Table 2.2.

We can use this to set up a table with each ciphertext letter and the
most likely plaintext letters. For instance, suppose Eve has the ciphertext

OFKOP QZHUL XSFTJ JRAHY

Then we can observe the following:
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ciphertext: O F K O P Q Z H U L X S F T J J R A H Y
plaintext

Most likely: e n t e o n e a t s t a n t e e i s a t
Second: t i i t s a t s n o e l i o i i a d s e
Third: s h h s d r a l s h n h h n t t t n l o
keytext

Most likely: t t e t e e e i o e r t t n o o a t i s
Second: i o t i i r t a i a c e o i s s s e a d
Third: h n s h t i a t n t l a n h d d l o t n

Now Eve looks for high-frequency combinations of letters, or com-
mon words, keeping in mind that they could be scattered through the
three lines of plaintext and the three lines of keytext, but for any given
ciphertext letter the plaintext and keytext lines have to correspond. For
example, the first word of the plaintext might be “this,” which would
correspond to “inth,” which is probably followed by “e” to make “in
the,” giving “this o.” After that it gets harder, and Eve might have to do
some trial and error and maybe add more lines to the table, but it’s quite
possible to finish given enough time and patience.

Another technique that often works well in this situation is the
probable word method. Instead of looking for common words among
the most likely plaintext and keytext possibilities, Eve could just select a
very common word, such as the, or a word she has reason to think is in
the plaintext for other reasons. Then she can try the word as plaintext
in each possible place and see if she gets high-frequency letters or parts
of words as keytext. Or, she can try a common word as keytext and see
if she gets likely plaintext. The probable word method is also useful in
several other situations we have looked at, so I thought I ought to men-
tion it. There’s not very much mathematics in it, though, so I’m going
to leave it at that.

5.2 one-time pads

If a repeating-key cipher can be broken by using the repetitions and
a running-key cipher can be broken by using either multiple messages
or the frequency of letters and words in the key, is there a cipher that
cannot be broken either way? There is such a “perfectly secure” sys-
tem, and it seems to have been independently discovered more than
once in the late nineteenth and early twentieth centuries. The first we
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know of is from 1882, when a California banker named Frank Miller
published a code and cipher combination system for use in telegraphs.
Sadly, his system seems to have been ignored and forgotten. There is
some disagreement about exactly who next put all the pieces necessary
for a perfectly secure system together, but it seems to have been ei-
ther Gilbert Vernam, from Section 4.1, or Major Joseph O. Mauborgne,
or both, possibly with help from their colleagues. In 1928, Mauborgne
was head of the Army Signal Corps’ research and engineering division
when AT&T reported the success of Vernam’s device for encrypting tele-
typewriter communications. Since the Signal Corps was responsible for
communications security in the Army, Mauborgne was sent to see a
demonstration. He loved the system—but there was a problem with the
key. The AT&T engineers had originally put the random key onto a loop
of tape, which would cycle through the machine over and over again.
They quickly realized that this was a form of repeating-key cipher and
could be broken by the same techniques we used in Chapter 2. Two so-
lutions were suggested. One was to make two shorter, looped keytapes
of different lengths and encrypt with both of them. As in Section 2.7, the
length of the resulting key is the least common multiple of the lengths
of the two tapes. Even this system is vulnerable, however, as we saw in
Section 2.7, especially under heavy traffic.

The other solution was to have a key as long as the cipher, like a
running key, but a purely random key with no frequency information
or probable words to let the cryptanalyst get started. Furthermore, the
key could never be reused. If it was reused several times, the techniques
of superimposition of multiple messages from Section 5.1 could be used
to break the message. Even worse, the message could be broken even
if the key was used only twice. This is easiest to see in the form of
equations: suppose Eve has acquired two ciphertexts C1 and C2, such
that

C1 ≡ P1 + k modulo 2

and

C2 ≡ P2 + k modulo 2.

She adds them to get

C1 + C2 ≡ P1 + P2 + 2k modulo 2.
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But 2 ≡ 0 modulo 2, so Eve has

C1 + C2 ≡ P1 + P2 modulo 2,

which is the same result as if one plaintext had been enciphered by a
running-key. Thus she can use frequency or probable word information
from both texts to uncover the plaintexts, and then use those to get the
key if she wishes.

If the key is used only once, on the other hand, this system holds
up to even known-plaintext attacks. If Eve has a matching plaintext and
ciphertext, it is trivial for her to recover the key. But if the key is cho-
sen at random and never used again, knowing it does Eve no good. Due
to the importance of using keys only once, this system has come to be
known as the one-time system, one-time tape, or, most commonly,
one-time pad. The pad aspect requires a little explanation: around the
same time as Vernam and Mauborgne were working on their system,
three cryptologists in the German Foreign Office also realized that an
unbreakable system requires a one-time random key as long as the
plaintext. They were using plaintexts made up of decimal digits rather
than binary, adding modulo 10 rather than 2, and most importantly for
our story, working on paper rather than teletypewriter tape. Their sys-
tem, instituted for German diplomats in the early 1920s, used pads of 50
sheets, each of legal-size paper, filled with random digits. Exactly two
matching pads were made for each sequence of digits, and the sheets
were torn off and destroyed after each message.

Although it was generally acknowledged that the one-time pad
was unbreakable, it wasn’t until the 1940s that Claude Shannon gave
a rigorous proof. He had to start, in fact, with a rigorous definition of
“unbreakable.” Shannon said that a cipher has perfect security if, given
a ciphertext, it is just as likely to come from any plaintext as any other.
Thus, Eve can’t do any better at recovering the plaintext than random
guessing. Shannon went on to show some consequences of this. One
is that there must be as many keys as there are possible plaintexts—
practically speaking this means that the key must be as long as the
plaintext. Another consequence is that every key must be equally likely
to be used, which means that the characters or digits must be chosen at
random and never taken from a previous key. Both the teletypewriter
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system and the German diplomatic system fit these criteria, as does a
tabula recta cipher with a random key as long as the plaintext.

We can use this last cipher to illustrate exactly why the one-time
pad is unbreakable. Suppose Eve intercepts the ciphertext message

WUTPQGONIMM

which she has reason to believe says either “meet me at two” or “meet
me at ten.” She can try both possibilities; if the plaintext is “meet me at
two,” then she can find a key that works:

keytext: j p o v d b n t o p x

plaintext: m e e t m e a t t w o

ciphertext: W U T P Q G O N I M M

“Aha!” says Eve. But wait—if she tries “meet me at ten,” she also finds a
key that works:

keytext: j p o v d b n t o h y

plaintext: m e e t m e a t t e n

ciphertext: W U T P Q G O N I M M

In fact, there’s a key that works for every possible plaintext; for example,

keytext: n i k e l n n b v x y

plaintext: i l i k e s a l m o n

ciphertext: W U T P Q G O N I M M

If every key is just as likely as every other, then there’s no way Eve
can possibly tell which is the right one. So she can’t identify the right
plaintext.

Despite the attraction of perfect security, there’s one big problem
with the one-time pad: it requires a lot of random key material, and
Alice and Bob have to figure out how to exchange it. During the first
large-scale trial of the teletypewriter system, Vernam and Mauborgne
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ran out of key tape and had to fall back on the system with two looped
key tapes—and that was a system that communicated between station-
ary participants, on a trial basis with plenty of warning, during peaceful
circumstances. In practice, it’s very seldom that conditions are suitable
for using a one-time pad. Diplomatic communications are one such case.
The key material can be sent by diplomatic courier at regularly sched-
uled times, and then used to communicate over insecure telephone or
computer networks. For example, the “red phone” line linking the White
House and the Kremlin was encrypted, at least originally, with a one-
time system. One-time pads (on paper) were also used during the Cold
War by the Soviet Union for most of its top-level spy communications.
The pads can be made extremely small so they are easy to hide and easy
to get rid of in an emergency. They were also made extremely flammable
for the latter reason. Presumably the difficulty in transmitting new key
material was dealt with by merely being conservative about how many
messages are sent.

5.3 baby, you can drive my car: autokey ciphers

There are systems that do not involve repeating keys and yet do not re-
quire a long keytext because sections of previous plaintext, ciphertext, or
keytext are used to generate new keytext. These systems, called autokey
ciphers, do not provide perfect security, but they can be more difficult
to break than repeating-key ciphers and more convenient than running-
key ciphers and one-time pads. The autokey idea was first thought of, or
at least first described, around the same time as the early polyalphabetic
ciphers by Girolamo Cardano. His idea was to use the plaintext itself
as a “key” to encrypt the ciphertext, starting it over with each word. The
modern term for this key would be a keystream. As we will see, it’s not
a proper key at all.

For example, Alice might have encrypted the title of Cardano’s book
on gambling as

keystream: o n o n c a s t i o n c a s t

plaintext: o n c a s t i n g t h e d i e

ciphertext: D B R O V U B H P I V H E B Y
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In order to decrypt, Bob needs to decrypt the first word (more on that
later), and then he can use it to decrypt the next two letters:

keystream: o n o n

ciphertext: D B R O V U B H P I V H E B Y

plaintext: o n c a

This gives him the key for the next two, and so on.
There are three big problems with Cardano’s system. The first might

be more obvious when we look at the first word of our example in terms
of modular arithmetic:

keystream: o n

numbers: 15 14

plaintext: o n

numbers: 15 14

ciphertext: D B

numbers: 4 2

All we are doing to the first word is adding it to itself, or multiplying it
by 2. But we know two is a bad key, so there is more than one possible
way to decrypt the first word; it could also have been

keystream: b a

numbers: 2 1

plaintext: b a

numbers: 2 1

ciphertext: D B

numbers: 4 2

This might not be fatal. It applies only to the first word, and not only
will the incorrect decipherment probably be gibberish, but it will make
the rest of the text gibberish also. The second problem is more impor-
tant. Cardano’s cipher doesn’t have a key that Alice and Bob can change
at will, and thus it violates Kerckhoffs’ principle. The third problem is
common to many autokey ciphers. If Bob makes a mistake in decipher-
ing the cipher early on, it is pretty much impossible to recover from
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it, since the early plaintext is needed to decipher the rest. These three
problems pretty much doomed Cardano’s cipher. Bellaso improved the
situation by combining the autokey idea with a progressive substitution
cipher, but the system never caught on, probably due to its complexity.

Unlike in the case of the Vigenère cipher from Section 2.4, this time
it really was Blaise de Vigenèrewho made the big breakthrough, which
he described in his 1586 book, Treatise on Ciphers or Secret Manners

of Writing. He avoided Cardano’s first problem by having Alice use
a “priming key” to encrypt the first letter and by using the plaintext
starting with the first letter as the key starting with the second letter:

keystream: v a w o r t h l e s s c r a c k i n
plaintext: a w o r t h l e s s c r a c k i n g
ciphertext: W X L G L B T Q X L V U S D N T W U

The modern term for this priming letter is an initialization vector. A
vector is a list of things of a fixed length, and this is a list of starting
letters of length 1. It’s easy to see how it could be any other length that
Alice and Bob agree on.

This doesn’t fix Cardano’s second problem, since the priming key
isn’t really much of a key—it affects only the encryption of the first
letter. Vigenère also included a provision that fixed this by adding an
extra step that alters the plaintext before using it as the keystream. The
real key to the cipher is then the method of alteration. For example, we
could apply the 25P + 1, or atbash, transformation to each ciphertext
letter before using it:

shifted plaintext: v a w o r t h l e s s c r a c k i n
keystream: e z d l i g s o v h h x i z x p r m
plaintext: a w o r t h l e s s c r a c k i n g
ciphertext: F W S D C O E T O A K P J C I Y F T

This idea eventually came to be called a plaintext autokey cipher, with
the key being the 25P + 1 cipher. Cardano’s third problem is still an
issue. If Bob makes a mistake anywhere in the deciphering or if there
is an error in transmitting the ciphertext, all deciphering from then on
is doomed. This problem is inherent in plaintext autokey ciphers and is
generally given as the reason for their scarcity.
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Vigenère did propose another option that solves this problem,
known as error propagation. Instead of a plaintext autokey cipher, Al-
ice could use a ciphertext autokey cipher. In this case, the ciphertext
is shifted one or more letters, after an initialization vector, and becomes
the keystream. For example,

keystream: i f g z t y z l x w l g y n w

plaintext: w a s t e a l l y o u r o i l

ciphertext: F G Z T Y Z L X W L G Y N W I

This time the initialization vector percolates through and influences all
the ciphertext, but on the other hand, almost all the keystream is sitting
out in plain sight. Kerckhoff’s principle suggests that Eve might know
Alice and Bob are using a ciphertext autokey cipher, so giving her the
keystream is a bad idea. All she has to do is try it in different positions
until it works and then figure out the initialization vector.

As with the plaintext autokey cipher, the security is improved by
applying another transformation. A ciphertext autokey cipher using the
25P+ 1 transformation, for example, would look like this:

shifted ciphertext: I O M G N R J C J P Z V W S Q
keystream: r l n t m i q x q k a e d h j
plaintext: w a s t e a l l y o u r o i l
ciphertext: O M G N R J C J P Z V W S Q V

Once again, the 25P + 1 transformation would be considered the key
here.

Since the keystream depends only on the ciphertext, not the de-
crypted plaintext, ciphertext autokey ciphers don’t suffer from the same
problem, in which deciphering errors propagate through the decipher-
ing process. Instead, they have a related problem if Alice makes an
enciphering error. Since changes in the ciphertext affect all the rest
of the enciphering process, any mistake Alice makes will make Bob’s
deciphered message gibberish from that point on. Ciphertext autokey
ciphers were rather rare before modern computers came around, but a
sort of encryption that is really the same idea has become fairly common
since then.
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Figure 5.1. ECB encryption.

^(@@@)^(@@@)^
(@@@@@@@@@@@)
^(@@@@@@@@@)^
^^^(@@@@@)^^^
^^^^^(@)^^^^^
Plaintext

(*&&&!(*&&&!(
*&&&&&&&&&&&!
(*&&&&&&&&&((
(((*&&&&&!(((
(((((*&!(((((
ECB encryption

&*)((&&*)((&&
*)((((((((((&
&*)((((((((&&
%%%*)((((&&%%
%%%%%*)&&%%%%
Plaintext autokey
encryption

&!^!^($@()#)&
!^!^!^!^!^!^(
$@()#@()#@(*!
)&*$%*&$%^%@#
^%@#^*&@#^%@#
Ciphertext autokey
encryption

Figure 5.2. The effect of different modes of encryption on a picture.

In fact, each of the types of precomputer autokey ciphers corre-
sponds to a mode of operation that can be used with a modern block
cipher. The way we showed block ciphers being used in Chapter 4,
where each block is enciphered separately, is technically known as elec-
tronic codebook mode, or ECB (see Figure 5.1). The drawback of this
mode is that the same block of plaintext always encrypts to the same
block of ciphertext. If blocks are 128 bits long, as in the case of AES,
that’s 16 text characters, which is a pretty long repeat. However, in the
case of other types of data, such as high-resolution pictures or high-
quality music, such a repeat could be quite common. This could leak a
lot of information, so ECB is not considered secure.

I have tried to illustrate this in Figure 5.2 by using a cipher with a
very small block size and a very low-resolution picture. The first picture
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Figure 5.3. PFB encryption.

shown is the plaintext. This was encrypted by converting the symbols
to numbers according to their positions on a standard US keyboard:

symbol: ! @ # $ % ^ & * ( )

number: 1 2 3 4 5 6 7 8 9 0

In the second picture, each digit was encrypted separately using the
transformation 3P+1 modulo 10 and converted back into a symbol. The
general shape of the picture is still easy to make out. In the third picture,
the string of digits is encrypted using a plaintext autokey cipher with
the transformation 3P + 1 modulo 10 and an initialization vector of 0.
The picture is somewhat harder to make out, although the long strings
of identical plaintext symbols still allow too much information to leak
through. In the fourth picture, the string of digits is encrypted using
a ciphertext autokey cipher with the transformation 3P + 1 modulo 10
and an initialization vector of 0. The final result is then considerably
more difficult, although not impossible, to relate back to the original
picture.

Suppose we take the idea of the plaintext autokey cipher but use a
modern block cipher like AES instead of 25P + 1 and add bits modulo
2, as in Section 4.1, instead of adding letters modulo 26. Then we have
plaintext feedback mode, or PFB, as in Figure 5.3. A variation on this
is to combine each plaintext block with the next before encrypting the
combined block. This is called plaintext block chaining, or PBC, and
is shown in Figure 5.4. PFB and PBC still suffer from the issue of error
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Figure 5.4. PBC encryption.

propagation we mentioned above. With modern computers, errors in
encryption and decryption are much rarer than they used to be. How-
ever, errors in transmission can still be a very serious problem, so these
modes are rarely used. They also leak some frequency information, as
we saw in Figure 5.2. If some plaintext blocks occur substantially more
often than others, it will be relatively easy to tell this by looking at the
ciphertext.

We can do the same thing with ciphertext autokey ciphers: Vi-
genère’s ciphertext autokey cipher becomes ciphertext feedback mode,
or CFB, as shown in Figure 5.5. Or, if we combine each ciphertext block
with the next plaintext block before encryption, we get ciphertext block
chaining, or CBC, as shown in Figure 5.6. These modes don’t suffer
from error propagation caused by mistakes in transmission, and, as we
said, the errors in encryption that could cause propagation are rare with
modern computers. Therefore, these are considered very useful modes
of operation and are quite common.

The third major type of autokey cipher is the key autokey cipher.
This apparently didn’t occur to Vigenère, probably because the idea of
copying the keystream to the keystream doesn’t seem like it would get
you anywhere. However, if we add an extra transformation in the way
we’ve been doing, then interesting things start to happen. If Alice adds
1 to the keystream letter each time, she gets Trithemius’ progressive
cipher:
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Figure 5.5. CFB encryption.
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Figure 5.6. CBC encryption.

shifted keystream: z a b c d e f g h i j

keystream: a b c d e f g h i j k

plaintext: t h e o p p o s i t e

ciphertext: U J H S U V V A R D P

shifted keystream: k l m n o p q r s t

keystream: l m n o p q r s t u

plaintext: o f p r o g r e s s

ciphertext: A S D G E X J X M N

Other transformations will give us other repeating-key ciphers, none of
which are especially interesting or secure.

But there’s nothing that says that the extra transformation has to
work on only one letter or number at a time. It will be easier to think
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of the keystream as composed of numbers for this type of cipher, so
suppose Alice starts out with an initialization vector of 5 decimal digits,
such as 17742. Before she adds this to her plaintext, she adds each of the
5 digits to a new block of 5 digits, say 20243, using addition modulo 10.

shifted keystream: 1 7 7 4 2

keystream: 3 7 9 8 5

plaintext: t u r n i n gpo i n t on t h e e a s t e r n f r o n t

ciphertext: WBAVN

For the next block of 5 digits of the keystream, Alice adds 20243 to
the first 5 digits, and so on.

shifted keystream: 1 7 7 4 2 3 7 9 8 5 5 7 1 2 8 7 7 3 6 1 9 7 5 0 4 1 7 7 4

keystream: 3 7 9 8 5 5 7 1 2 8 7 7 3 6 1 9 7 5 0 4 1 7 7 4 7 3 7 9 8

plaintext: t u r n i n g p o i n t o n t h e e a s t e r n f r o n t

ciphertext: WBAVN SNQQQ UARTU QL J AW ULYRM UVWB

This is a slightly simplified version of a cipher used by Soviet troops
during World War II to encipher numerical code groups, but as you can
see, it is possible to use it on letters as well. Technically, this is still
a repeating-key cipher, but the period has increased to 50. That’s not
unbreakable and there are some relations between the blocks that Eve
can use, but it’s pretty good for only 5 key digits—and, of course, we
could use larger blocks. Furthermore, we could use a more interesting
block cipher to transform our keystream, such as a transposition or a Hill
cipher, which could make the period quite large. Key autokey ciphers are
extremely flexible, although they can be extremely complicated to use.
But then that’s what computers are for.

The modern block cipher mode of operation that corresponds to
the key autokey cipher is called output feedback mode, or OFB. Once
again, the basic idea is to operate on the previous keystream block with
a block cipher and then add the bits of the result modulo 2 to the bits of
the plaintext. Figure 5.7 shows how that looks.

Output feedback mode uses a single previous key block to produce
the next one and therefore in some sense is still a progressive cipher.
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Figure 5.7. OFB encryption.

However, since there are a lot of different possible blocks, the period is
likely to be very long. Also, there are supposed to be a lot of possible keys
for the block cipher; therefore, it’s pretty unlikely that Eve would be able
to attack a good cipher in OFB mode using repeating-key techniques. It
is possible, however, and for that reason some experts suggest not using
it. Even so, it’s still pretty common.

There’s one more common mode of operation for block ciphers, and
it corresponds to a key autokey cipher of a sort, although not one that
was ever likely to have been used before computers. Instead of taking
the previous keystream block and encrypting it to get the new keystream
block, we could start with the initialization vector, alter it a little bit for
each new block, and encrypt that. The most common alteration is just
to add 1 each time before encrypting, so this is generally called counter
mode, or CTR. One reason this doesn’t make a good by-hand cipher is
that the block cipher needs to have good diffusion properties. We’ll use a
2× 2 Hill cipher (modulo 10) for our example. The Hill cipher generally
has good diffusion, as we saw in Section 4.5.

Suppose Alice picks 17 as her initialization vector and 1, 2, 3, 5 as the
key to the Hill cipher. Then her encryption would look like this:

counter: 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4

keystream: 5 8 7 3 9 8 2 6 4 1 6 6 8 1 0 6

plaintext: y o u c a n c o u n t o n m e x

ciphertext: DW BF J V EU YO ZU VN ED

For a computer cipher, the setup looks like Figure 5.8.
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Figure 5.8. Counter mode encryption.

As with output feedback mode, the initialization vector for counter
mode doesn’t necessarily have to be secret, but it does need to be
different for every message that uses a particular key. Otherwise, the
keystream is the same for two messages and Eve can use the superimpo-
sition techniques of Sections 5.1 and 5.2. Also as with output feedback
mode, the cipher will eventually repeat. In this case, it’s easy to see
how long the period is: it’s whenever the counter wraps around back to
where it started. Therefore, all Alice and Bob need to do is change the
key before that happens. One last interesting feature of counter mode
is that unlike stream ciphers generally, you can easily start encrypting
or decrypting a message in the middle just by setting your counter to
the appropriate number. This makes counter mode useful for encrypting
data files that store information that might need to be changed piece by
piece.

5.4 linear feedback shift registers

We noted in the previous section that making the block size of a block
cipher larger can improve the security of several of its modes of opera-
tion. An alternative is to use very small blocks, even 1 letter or 1 bit, but
make each new key block depend on more than 1 previous block. Let’s
again start out with an initialization vector of 5 decimal digits. Let the
sixth keystream number be equal to the sum of the first 2 keystream
digits modulo 10. The seventh keystream number is the sum of the
second and third digits modulo 10, and so on. For example, if the
initialization vector is (1, 2, 0, 2, 9), we get
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1, 2, 0, 2, 9, 3, 2, 2, 1, 2, 5, 4, 3, 3, 7, 9, 7, 6, 0, . . .

This sequence will eventually repeat, but not for 16401 steps!
The process we are using to generate this keystream is called chain

addition in older sources or a lagged Fibonacci generator (modulo
10) in newer ones. Fibonacci refers to the famous Fibonacci sequence,
which you get if you start with an initialization vector of (1, 1) and do
not use modular arithmetic:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

This sequence was well known to ancient Indian mathematicians but
was introduced to Western Europe by Leonardo “Fibonacci (of the
Bonacci family)” of Pisa. Lagged refers to the fact that unlike the Fi-
bonacci sequence, we are not adding the two terms on the end of the
current stream, but two that are farther back.

Alice’s encryption with our lagged Fibonacci keystream looks like
this:

keystream: 1 2 0 2 9 3 2 2 1 2 5 4 3 3 7 9 7 6 0
plaintext: m u l t i p l y l i k e r a b b i t s
ciphertext: N W L V R S N A M K P I U D I K P Z S

This cipher looks like something Vigenère might have come up with, if
not Fibonacci himself. Actually, it was invented in 1969 as a challenge
to the American Cryptogram Association and is called the Gromark
cipher. The technique of chain addition modulo 10 seems to have first
appeared in unclassified literature after the 1957 trial of the Soviet spy
Rudolf Ivanovich Abel. At the trial, former Soviet spy Reino Hayhanen,
who had defected to the United States, described the use of chain ad-
dition to generate key numbers for a complicated cipher. Unlike the
Gromark, it used the key numbers in a straddling checkerboard and
a complicated transposition rather than a polyalphabetic cipher. Hay-
hanen’s cipher is generally known as the VIC cipher, after Hayhanen’s
code name.

For a classical chain addition system, the initialization vector is
generally used as the key. It’s easy to change and very strongly influ-
ences the rest of the keystream, and it can also be easily used as the
indication of how far back in the keystream to go to get the numbers
that are added together. However, a lagged Fibonacci system can also be
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varied by using two numbers from the previous keystream that are
not next to each other or by finding a different rule to combine the
numbers—it could be a modulus other than 10, it could be multiplication
instead of addition, or it could be something even more complicated.

We could change the system even more by using more than two
numbers from the previous keystream. Suppose we write the formula
for the key number at position n in the Gromark cipher as

kn ≡ kn−5 + kn−4 modulo 10.

For a lagged Fibonacci system, more generally we would have

kn ≡ kn−i + kn−j modulo m,

where i and j tell us how back in the keystream to go and m is the
modulus. Now suppose we use the formula

kn ≡ c1kn−j + c2kn−j+1 + · · · + cj−1kn−2 + cjkn−1 modulo m.

The coefficients c1, c2, . . . , cj can be part of the key or they can be con-
sidered fixed as part of the cipher method, but either way they are the
same throughout the message.

For example, let’s take m = 2, j = 4, c1 = c3 = 1, and c2 = c4 = 0,
so we have

kn ≡ 1kn−4 + 0kn−3 + 1kn−2 + 0kn−1 modulo 2.

If we start with an initialization vector of k1 = k2 = k3 = k4 = 1, then
we have

k5 ≡ 1× 1+ 0× 1+ 1× 1+ 0× 1 ≡ 0 modulo 2,

k6 ≡ 1× 1+ 0× 1+ 1× 1+ 0× 0 ≡ 0 modulo 2,

k7 ≡ 1× 1+ 0× 1+ 1× 0+ 0× 0 ≡ 1 modulo 2,

k8 ≡ 1× 1+ 0× 0+ 1× 0+ 0× 1 ≡ 1 modulo 2,

and so on.
A real or simulated machine that produces a keystream using a for-

mula of this type is called a linear feedback shift register, or LFSR.
Linear refers to the type of formula. Equations where one set of variables
is multiplied by another set and then added to together are called linear
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because the most famous such equation is the equation y = mx + b

for a line in the two-dimensional plane. Feedback refers to the fact that
previous values are used to produce new values. And shift register refers
to a particular type of electronic circuit that was used early on to build
these machines. A shift register, as shown in Figure 5.9, is a sequence
of storage cells, each of which holds a number. The shift register is con-
trolled by a clock so that at each tick of the clock, a new input number
goes into cell j, the contents of cell j move to cell j − 1, and so on. The
contents of cell 1 become the output of the shift register. If the shift reg-
ister starts with k1 in cell 1 through kj in cell j, as it continues to run it
will output the original k1, k2, . . . , kj, and then new numbers kj+1, kj+2,
and so on, based on the input.

A feedback shift register uses the contents of the various cells in
some way to produce the new input to the first cell, as in Figure 5.10;
the procedure used to do this is called the feedback function. And a
linear feedback shift register produces the new input by a linear feed-
back function. Figure 5.11 gives you an idea how you might build such
a thing, with the circles labeled c1 to cj indicating to multiply the thing
going in by that number modulo m and the circles labeled with a plus
sign indicating to add the two things going in together modulo m.

The most common modulus for LFSRs is 2, in which case all the
numbers can be taken to be either 0 or 1 and we can think of them
as bits. Multiplying a number by either 0 or 1 and then adding means
either doing nothing or adding the number, so we can also think of the
multiplication circles in Figure 5.11 as switches that either let the bit
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Figure 5.12. A linear feedback shift register represented with switches.

be added or not. Figure 5.12 shows an LFSR represented in this form.
As you can probably imagine, this setup is very easy to implement in a
specialized piece of digital hardware, and a variation that produces the
same results is easy in software as well, although not as fast. The use of
digital LFSRs in cryptography goes back at least as far as 1952, when the
brand-new NSA started designing the KW-26 for their own use and that
of the US military.

Going back to our figures, if we know what c1 through cj are, yet
another way to represent them is by either drawing a line or not. So, the
example we just gave can be drawn as in Figure 5.13. If we start it with
1, 1, 1, 1 in the cells, it will output

1, 1, 1, 1, 0, 0, 1, 1, . . .

just like we calculated. I encourage you to try this yourself and check.
Now that we know what an LFSR is, how do we use it for encryp-

tion? The LFSRs we are going to use always output numbers modulo 2,
or bits, so it would make sense to represent the plaintext in bits as well.
We will use the ASCII representation explained in Sidebar 4.1. If Alice
wants to encrypt a message, she first converts it to ASCII:
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plaintext: S e n d

ASCII: 1010011 1100101 1101110 1100100

plaintext: $ .

ASCII: 0100000 0100100 0101110

Then she generates a keystream using her LFSR:

plaintext: S e n d

ASCII: 1010011 1100101 1101110 1100100

keystream: 1111001 1110011 1100111 1001111

plaintext: $ .

ASCII: 0100000 0100100 0101110

keystream: 0011110 0111100 1111001

Next, she adds the corresponding bits modulo 2:

plaintext: S e n d

ASCII: 1010011 1100101 1101110 1100100

keystream: 1111001 1110011 1100111 1001111

ciphertext bits: 0101010 0010110 0001001 0101011

decimal numerals: 42 22 9 43

plaintext: $ .

ASCII: 0100000 0100100 0101110

keystream: 0011110 0111100 1111001

ciphertext bits: 0111110 0011000 1010111

decimal numerals: 62 24 87
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If Alice and Bob are computers, then Alice is done when she has
the ciphertext bits. If Alice is a person, she might want to put them in a
more compact form, such as the decimal equivalent.

You might have noticed that the output of this LFSR repeats with
a fairly short period of only 6 bits. You might be asking whether every
LFSR is going to repeat and, if so, whether the periods are always this
short. The answers are yes and no, respectively. The output of an LFSR
has to repeat because it depends only on the numbers in the cells of the
shift register modulo m, and there are only so many options for those
numbers. Once the same set of numbers repeats, then the output repeats
from then on. How many possible sets of numbers are there? In the
example we gave with four cells and a modulus of 2, each cell will hold
0 or 1; thus there will be 2× 2× 2× 2 = 24 = 16 possibilities. If all the
cells are zero, then it should be pretty clear that the output is always also
going to be zero. So we should avoid that possibility. There are 15 others
that we could go through before the output repeats, so there might be a
modulo-2 LFSR with 4 cells and a period of 15, and in fact there is. In
general, an LFSR with j cells and a modulus of m can have a period of
at most mj − 1. If m is a prime number, multiple LFSRs with this period
exist and there are well-known ways of finding them.

This all seems like an excellent situation if we want a stream
cipher. We have a fast way of producing a keystream and a reliable
way of guaranteeing a period as long as we want. Unfortunately, the
equations describing LFSRs, like those in the Hill cipher, are linear.
That means that LFSRs, like Hill ciphers, are extremely vulnerable to
known-plaintext attacks.

Suppose Eve knows that she is looking at an LFSR with j cells, and
she has 2j pairs of plaintext bits and corresponding ciphertext bits. There
might be s bits we don’t have at the beginning, so call the plaintext bits
we do have Ps+1 through Ps+2j and the ciphertext bits Cs+1 through
Cs+2j. Since the encrypting is done using

Cn ≡ Pn + kn modulo 2,

Eve can easily recover the keystream bits using

kn ≡ Cn − Pn modulo 2.
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Remember that Eve’s goal is to recover the key, which for an LFSR
is usually considered to be the initialization vector k1 through kj and,
sometimes, the coefficients c1 through cj as well. At this point Eve could
always do a known-plaintext version of a brute force attack by using
every possible key to see if it generates the right keystream. However,
there is a much better way.

Without knowing k1 through kj or even c1 through cj, Eve can set
up a system of equations using the keystream bits she does know:

ks+j+1 ≡ c1ks+1 + c2ks+2 + · · ·+ cj−1ks+j−1 + cjks+j modulo 2

ks+j+2 ≡ c1ks+2 + c2ks+3 + · · ·+ cj−1ks+j + cjks+j+1 modulo 2
...

ks+2j ≡ c1ks+j + c2ks+j+1 + · · ·+ cj−1ks+2j−2 + cjks+2j−1 modulo 2

That’s just a system of j equations in the j unknowns c1 through cj, and
it can be solved using the same techniques we saw Eve use for a Hill
cipher in Section 1.6. This will give her the coefficients c1 through cj.

If Eve wants to know the initialization vector k1 through kj, she can
now set up the system

kj+1 ≡ c1k1 + c2k2 + · · ·+ cj−1kj−1 + cjkj modulo 2

kj+2 ≡ c1k2 + c2k3 + · · ·+ cj−1kj + cjkj+1 modulo 2
...

ks ≡ c1ks−j + c2ks−j+1 + · · ·+ cj−1ks−2 + cjks−1 modulo 2

ks+1 ≡ c1ks−j+1 + c2ks−j+2 + · · ·+ cj−1ks−1 + cjks modulo 2
...

ks+j ≡ c1ks + c2ks+1 + · · ·+ cj−1ks+j−2 + cjks+j−1 modulo 2

Since Eve now knows c1 through cj as well as ks+1 through ks+j, this is
a system of s equations in the s unknowns k1 through ks. Thus she can
solve it to get the entire keystream up to the point she knew already,
including the initialization vector.

5.5 adding nonlinearity to lfsrs

If linear feedback shift registers are not secure because of the linearity,
what can we do to improve the situation? One option would be to use
a nonlinear feedback function, but those are slower, and their strengths
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and weaknesses are harder to analyze. Another option is to take the
values of more than one cell of an LFSR or the output values of more
than one LFSR and combine these values in a nonlinear way. One pitfall
of this approach is possible vulnerability to a correlation attack—if the
nonlinear function is not well chosen, then it may be possible to make
an educated guess about the values in one or more of the LFSRs from
the values of the output. A third option is to alter the clock that controls
when the bits in the LFSR shift. There can be multiple LFSRs shifting
at different times, or the output of one LFSR can control the shifting of
another or even itself. And these ideas can be combined.

As I’m writing this book, the most used and most studied stream
cipher based on LSFRs is probably the A5/1 cipher used in the first
generation of GSM digital cell phones. The details of the development
of A5/1 are extremely unclear, and the deliberations that led to it are
apparently classified. According to anonymous sources cited by one
researcher, there was a disagreement among the intelligence agencies
of the Western European countries originally involved in the devel-
opment of GSM in the 1980s. In particular, West German intelligence
wanted strong encryption, presumably to protect against eavesdropping
by Soviet-bloc countries. The other countries’ agencies preferred weaker
encryption, possibly to make it easier for them to conduct their own
surveillance. The cipher chosen in the end seems to have been one of the
weaker ones. On the other hand, the final choice is particularly efficient
in terms of speed, number of components, and power consumption.
These features may have also played a role in the decision.

The details of the cipher were developed in 1987 and 1988, and the
cipher was first officially used in 1991. At this point the cipher was kept
as a trade secret. Sometime around early 1994, a British telephone com-
pany gave documents describing the cipher to a researcher at a British
university, apparently without requiring him to sign a nondisclosure
agreement. By mid-1994 an almost-complete description of the cipher
was posted on the Internet. In 1999 the complete design was reverse-
engineered from an actual cell phone and again posted on the Internet.
The GSM Association eventually confirmed that this description was
correct.

The A5/1 cipher starts with three LFSRs, one with 19 cells, one
with 22 cells, and one with 23 cells, as shown in Figure 5.14. Each has
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Cell 1 Cell 23

Clock

Cell 1 Cell 22 Output

Cell 1 Cell 19

1 2 3 4 5 6 7 8 9 1110 12 13 2120 22 2314 15 16 17 18 19

1 2 3 4 5 6 7 8 9 1110 12 13 2120 2214 15 16 17 18 19

1 2 3 4 5 6 7 8 9 1110 12 13 14 15 16 17 18 19

Figure 5.14. The A5/1 cipher.

maximum period, that is, 219 − 1 = 524,287, 222 − 1 = 4,194,303, and
223 − 1 = 8,388,607. This makes 64 cells total, which are initialized
with the bits of a 64-bit key. The outputs from the three LFSRs are
all added together modulo 2 and then added modulo 2 to the plain-
text bits. So far this is a lot like multiple encryption by repeating-key
ciphers, as in Section 2.7. Since each period has a GCD of 1 with
each other period, if we left the cipher here it would have a period of
(219−1)×(222−1)×(223−1) ≈ 18×1018, which is certainly very long.
But we have combined three linear things in a linear way, so this cipher
would still be linear and still vulnerable to a known-plaintext attack.

The nonlinearity comes in by the third idea mentioned previously,
making the clock system more complicated. Not all the 3 LFSRs are
shifted at every tick of the clock. Notice that a bit near the middle of
each LFSR is highlighted in Figure 5.14; these are the clock control bits.
Every time the clock ticks, these 3 bits “vote” for 0 or 1, and the majority
wins. Then each register shifts if its clock control bit voted with the ma-
jority, and otherwise it stays put. Table 5.2 might make this clearer. As
you can see from the table, each LFSR shifts 3

4 of the time and at least
2 LFSRs shift on each clock tick. Experiments suggest that this change
cuts down on the period considerably, but with careful use this partic-
ular disadvantage would be tolerable compared to the added security
against known-plaintext attacks.

Alas, that added security seems to have turned out to be not as
great as the GSM researchers originally thought. The first hints of this
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Table 5.2.
The A5/1 clock control system

Clock control bit Shift?

LFSR-19 LFSR-22 LFSR-23 LFSR-19 LFSR-22 LFSR-23

0 0 0 yes yes yes
0 0 1 yes yes no
0 1 0 yes no yes
0 1 1 no yes yes
1 0 0 no yes yes
1 0 1 yes no yes
1 1 0 yes yes no
1 1 1 yes yes yes

came as early as 1994, when a known-plaintext attack was proposed.
It involved guessing some bits of the initialization vectors of the LFSRs
and working out what the other bits had to be. The details of this were
worked out in 1997 in a paper that also proposed another attack: a pre-
computation attack, which streamlines a known-plaintext brute-force
attack by letting Eve compute and store part of the information before
she gets her hands on the plaintext-ciphertext pairs. A third type of at-
tack developed against A5/1 was a variation on the correlation attack.
As described before, Eve makes an educated guess about the input to
a nonlinear function, based on the output and the function. Here, she
makes an educated guess about previous values in the three LFSRs based
on a later value of the keystream and an estimate of the number of times
that each LFSR has been shifted. Such an attack was first applied to A5/1
in 2001. Both the precomputation attacks and the correlation attacks on
A5/1 have been considerably refined since they were first proposed.

Known-plaintext attacks are somewhat difficult to mount against
actual cell phones, for various logistical reasons. However, several re-
searchers have discovered various peculiarities of the way A5/1 is used
in actual GSM phones. These allow Eve to identify the equivalent of
probable words or otherwise take advantage of known-plaintext-type
attacks with ciphertext-only data. In 2006 it was estimated that one
correlation-type attack could be mounted with 4 minutes of cell phone
communication and less than 10 minutes average computation time on
a personal computer and would succeed more than 90% of the time. A
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precomputation attack was described in 2003 that required 140 personal
computers running for 1 year to develop the precomputed tables and
twenty-two 200-gigabyte hard drives to store them. That’s a lot of pre-
computation, but a single personal computer using the tables could
decrypt a cell phone communication as fast as it could intercept it. A
project to create these tables as proof that the attack is feasible was
started and showed some partial cryptanalysis successes. The GSM As-
sociation downplayed the significance of these attacks but pointed out
that a new cipher, which does not involve LFSRs at all, is “being phased
in to replace A5/1.”

The new cipher, known as A5/3, is standard on 3G and 4G networks,
but progress on retrofitting the older networks was slow until 2013. In
that year, the internal NSA documents obtained by Edward Snowden re-
vealed that the NSA can “process” encrypted A5/1 without the key. This
was generally taken to refer to an attack similar to the attacks described
before. In response, a number of major wireless carriers announced that
they were either moving their older GSM networks to the A5/3 cipher
or simply replacing them with 3G or higher technology.

If LFSRs by themselves are insecure—and the GSM Associa-
tion seems to have given up on using LFSRs to secure cell phone
communications—you might be forgiven for asking if there are any
ciphers based on LFSRs still considered secure. As it happens, cipher
designers are still using LFSRs in their plans. The United States doesn’t
have a standard for stream ciphers, but in 2004 the European Network of
Excellence for Cryptology (ECRYPT), a research initiative funded by the
European Union, started the eSTREAM project to “identify new stream
ciphers suitable for widespread adoption.” Out of 34 ciphers submitted
for consideration, 7 were eventually determined to be secure enough,
efficient enough, and useful enough for the eSTREAM portfolio. Out of
those 7, 3 use LFSRs in some fashion. The answer, it seems, is simply that
one must be very careful in how one adds nonlinearity to an LFSR-based
cipher.

5.6 looking forward

Like Chapter 4, this chapter takes us about as far forward with this type
of cipher as we are going to go in this book. Both the development of
new stream ciphers and of new modes of operation for block ciphers
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are still areas of active research. The NIST Web site currently lists 12
approved modes of operation, with many more proposed for further
consideration. Five of the approved modes, ECB, CFB, CBC, OFB, and
CTR, are included in those we have discussed earlier. Another, XTS, is
related to counter mode but is designed specifically to encrypt informa-
tion stored on hard drives. The last six modes involve authentication
of messages rather than, or in addition to, encryption.

One problem with many of the modes and stream ciphers we have
discussed is that they don’t protect against the possibility that Eve can
change the message that Alice sends. I mentioned that it is desirable
for modes to avoid the propagation of errors in encryption or transmis-
sion. This also means that Eve might be able to make a small change
to one part of a message without making the whole thing unreadable.
This is especially important if Eve might know that a particular part
of a message contains numbers or computer data rather than text. For
instance, she might be able to change the amount of money in an elec-
tronic transaction or corrupt a critical part of a computer program to
crash Bob’s computer. Even if Eve can’t tell exactly what she is changing
the message to, she can still cause a lot of trouble.

The goal of an authentication mode is to use a key to produce a
message authentication code, or MAC, to go with the message. This
is a short piece of information that should change unpredictably if even
1 bit of the message is changed. Eve might be able to change Alice’s
message, but without the key she won’t be able to change Alice’s MAC
to match it. Bob uses the key to verify the MAC and make sure that
the message hasn’t been changed. Alice can employ a MAC whether
she encrypts her message or not—maybe she doesn’t care who knows
the message as long as Eve can’t change it.

One of the earliest and simplest MACs was CBC-MAC, a version
of which was made a US government standard in 1985. Essentially one
encrypts the message in CBC mode, using a special key, and throws
away everything except the last block of ciphertext. This needs some
tweaks to be really secure, but the CMAC authentication mode approved
by NIST is a close relative of CBC-MAC.

One problem with CBC-MAC and CMAC is that if Alice wants
to both encrypt and authenticate her message, she has to go through
the encryption process twice with two different keys. Authenticated
encryption modes produce the MAC and the ciphertext at the same
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Output

939291

×

69661

848382

×

78691

111110109

×

87661

Cell 1 Cell 93

Cell 1 Cell 84

Cell 1 Cell 111

Figure 5.15. The Trivium cipher.

time. How to do this both securely and efficiently is an important area
of current cryptographic interest.

As I said, cryptographers are also still working on completely new
stream ciphers. I mentioned that three of the eStream portfolio ciphers
use LFSRs. Two of those use both LFSRs and nonlinear feedback shift
registers (NLFSRs). NLFSRs put the nonlinear function directly into the
feedback function instead of using it to combine LFSRs. I mentioned
earlier that they were slower and harder to analyze, which is one reason
to use both NLSFRs and LFSRs as a sort of backup. One of the eStream
ciphers has attracted a lot of attention for using only NLFSRs but keep-
ing the nonlinearity to the minimum that seems necessary for security.
This is the Trivium cipher, shown in Figure 5.15. The only nonlinear
operations are the three places where two keystream bits are multi-
plied instead of added. It’s too early to tell whether this cipher will see
widespread use, but it looks promising.

That leaves three eStream ciphers that don’t use shift registers at
all. These are primarily designed to be implemented in software rather
than directly in circuitry. Such ciphers have more design flexibility and
use a wide variety of techniques. These include looking up values in
constantly changing tables and ideas of confusion and diffusion taken
from block cipher design.
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Will any major government ever standardize on a single stream ci-
pher the way that the United States standardized AES? It doesn’t look
very likely. Stream ciphers that are not directly based on block cipher
modes are generally used in specific situations where block ciphers are
not suitable. Sometimes this is for reasons of speed; other times it might
be because of limited processing ability, such as in cell phones or smart
cards. Or it might be for reduced power consumption, limited band-
width, to make the procedure easier to parallelize, for specific error
correction properties, or . . . . Since there are a variety of such situations
calling for ciphers with different strengths and weaknesses, it doesn’t
seem like anyone could pick a single “best” stream cipher.



6
Ciphers Involving Exponentiation

6.1 encrypting using exponentiation

We’d like our next cipher to be a simple mathematical cipher resistant
to both ciphertext-only and known-plaintext attacks, as explained in
Section 1.7. For the first, we’ll make it a polygraphic cipher, although
the way we construct the blocks is just a little bit different from what
we did in Section 1.6. Once again, we’ll take a block size of 2 in our
example and divide up the plaintext into 2-letter blocks.

po we rt ot he pe op le

This time, we’ll convert each 2-letter block into a number by just jam-
ming the numbers from the 2 letters together, putting in 0s where
appropriate.

plaintext: po we rt ot he pe op le

numbers: 16, 15 23, 5 18, 20 15, 20 8, 5 16, 5 15, 16 12, 5

“jammed together”: 1615 2305 1820 1520 805 1605 1516 1205

We will also need to pick a modulus for the cipher. A modulus of 26 is
no longer going to do it, since our blocks can be as large as 2626. It will
be convenient to pick a modulus that is a prime number, although later
in this chapter, we will see that we can get around that. For the moment,
2819 will be a good choice, since it is prime and larger than 2626.

We’ve tried addition, multiplication, and various combinations of
them. A mathematician’s next idea might be to try exponentiation,
or raising a number to a power. Remember that raising a number
to a power means multiplying it by itself repeatedly. For example,
23 = 2× 2× 2 = 8. In particular, we will use
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C ≡ P e modulo 2819.

The key for this cipher is traditionally called e, for encryption expo-
nent. Note that e has nothing to do here with the number 2.71828. . . ,
which is the base of the natural logarithm. The encryption exponent is
a number between 1 and 2818, with some restrictions, which we will
explore in more detail shortly. For the moment, let’s take e = 769.

plaintext: po we rt ot he pe op le

numbers: 16, 15 23, 5 18, 20 15, 20 8, 5 16, 5 15, 16 12, 5

together: 1615 2305 1820 1520 805 1605 1516 1205

to the 769th power: 1592 783 2264 924 211 44 1220 1548

What we are doing here is raising 1615 to the 769th power, wrapping
around every time we get to 2819, which means really a lot of multipli-
cations and wraparounds. You need a computer, or at least a very good
calculator, to have any hope of doing this. We can’t change all these
blocks back into letters, but that’s okay. Alice can just send Bob the
numbers.

How is Bob going to decrypt this? Just as the opposite of addition is
subtraction and the opposite of multiplication is division, the opposite
of taking a power is taking a root. For example, if 8 = 23, then 2 = 3

√
8,

and if C = P e, then P = e
√
C. But if you thought doing division and

making sure you get a whole number was problematic, taking roots is
even worse. For instance, in our example the first ciphertext block was
1592, and the 769th root of 1592 is approximately 1.0096, which is pretty
useless for our purposes.

6.2 fermat’s little theorem

In order to help Bob, we’re going to have to go a little bit deeper into
number theory than we have so far. Up until now, we’ve basically
been using one big mathematical idea, namely, modular arithmetic, as
formalized by Gauss. Now we need a second big idea, which is gener-
ally credited to Pierre de Fermat. Fermat was a seventeenth-century
Frenchman who was a lawyer by profession and a mathematician by
avocation. Possibly because of this, he had a bit of a mathematical chip
on his shoulder. He had a habit of writing letters to his colleagues in
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which he announced that he had proven something. Instead of giving
the proof, he challenged the recipient to come up with the proof him-
self. He also claimed he had proved some things that turned out to be
false, and at least one, now known as Fermat’s last theorem, that turned
out to be true but probably a lot harder to prove than Fermat thought.

The mathematical fact, or theorem, that we need here is definitely
true, and Fermat may very well have come up with a proof, although as
usual he didn’t write it down. It’s now called Fermat’s little theorem,
even though it has big implications. We don’t know how Fermat dis-
covered it, but here’s how you might have discovered it using the ideas
we’ve already explored.

Suppose you are working with a multiplicative cipher with a very
small alphabet that has a prime number of letters. The 13-letter Hawai-
ian alphabet would work. With a key of 3, the table for this alphabet
looks like this:

plaintext number times 3 ciphertext

a 1 3 I

e 2 6 H

i 3 9 M

o 4 12 W

u 5 2 E

h 6 5 U

k 7 8 L

l 8 11 P

m 9 1 A

n 10 4 O

p 11 7 K

w 12 10 N

‘ 13 13 ‘

The important thing here is that since 13 is prime, 3 is a good key,
and so is every other number from 1 to 12. Thus the column of numbers
on the left-hand side is the same as the column of the numbers on the
right-hand side, except in a different order. If you were playing around
with this, you might have tried adding each column. You would get the
same answer modulo 13, since they are the same numbers modulo 13:
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1+ 2+ 3+ · · · + 13 ≡ (1× 3)+ (2× 3)+ (3× 3)+ · · · + (13× 3) modulo 13.

Collect like terms on the right:

1+ 2+ 3+ · · · + 13 ≡ (1+ 2+ 3+ · · · + 13)× 3 modulo 13,

or

91 ≡ 91× 3 modulo 13,

or

≡ 0× 3 modulo 13.

That wasn’t that interesting. Instead of adding up each column, you
could try multiplying it instead. Then you would get

1× 2× 3× · · · × 13 ≡ (1× 3)× (2× 3)× (3× 3)× · · · × (13× 3) modulo 13,

1× 2× 3× · · · × 0 ≡ (1× 3)× (2× 3)× (3× 3)× · · · × (0× 3) modulo 13,

0 ≡ 0 modulo 13.

That’s even less interesting, but clearly the problem is the 13 at the end
of each column. You could try just leaving that out.

1× 2× 3× · · · × 12 ≡ (1× 3)× (2× 3)× (3× 3)× · · · × (12× 3) modulo 13.

Now you could pull out all the 3s on the right, which came from the key.

1× 2× 3× · · · × 12 ≡ (1× 2× 3× · · · × 12)× 312 modulo 13.

Cancel 1× 2× 3× · · · × 12:

1 ≡ 312 modulo 13.

And that, I hope you agree, is interesting.
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Notice that the choices of 13 and 3 weren’t important. Any prime
modulus p and any good key number k will do. So Fermat’s little
theorem tells us the following.

Theorem (Fermat’s Little Theorem) For any prime p and any k be-

tween 1 and p− 1,

kp−1 ≡ 1 modulo p.

6.3 decrypting using exponentiation

Now would probably be a good time to drop back and try to remember
our goal. We wanted to undo the equation

C ≡ P e modulo 2819.

Remember from Section 1.3 that in modular situations we should be able
to go forward to go backward. So it should be reasonable to look for a
number e such that

Ce ≡ P modulo 2819.

Since C ≡ P e modulo 2819, this is the same as saying

(P e)e ≡ P modulo 2819,

or, using the laws of exponents,

P ee ≡ P modulo 2819.

If we look at Fermat’s little theorem closely here, we see that it says

P 2818 ≡ 1 modulo 2819,

but we could also write it as

P 2818 ≡ P 0 modulo 2819.

We are working modulo 2819, which means 2819 is the same as 0 if we
are looking at the whole equation. But if we are looking at the exponent,
then Fermat’s little theorem says 2818 is the same as 0. In general, if we
are looking at an equation modulo a prime p, then we can treat the
exponent as if we were working modulo p − 1. Therefore, the number
e that we are looking for should be the inverse of e modulo 2818. For
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future reference, it is important to note that exponents work quite this
way only for primes. We will see the equivalent for other numbers in
Section 6.6.

So we’ll use the Euclidean algorithm on e (which was 769) and 2818
like we did in Section 1.3. I’ll put in a little less detail than I did there,
but feel free to fill in the gaps.

2818 = 769× 3+ 511 511 = 2818− (769× 3)

769 = 511× 1+ 258 258 = 769− (511× 1)

= (769× 4)− (2818× 1)

511 = 258× 1+ 253 253 = 511− (258× 1)

= (2818× 2)− (769× 7)

258 = 253× 1+ 5 5 = 258− (253× 1)

= (769× 11)− (2818× 3)

253 = 5× 50+ 3 3 = 253− (5× 50)

= (2818× 152)− (769× 557)

5 = 3× 1+ 2 2 = 5− (3× 1)

= (769× 568)− (2818× 155)

3 = 2× 1+ 1 1 = 3− (2× 1)

= (2818× 307)− (769× 1125)

so

1 = (2818× 307)+ (769×−1125)
and

1 ≡ 769×−1125 modulo 2818 ≡ 769× 1693 modulo 2818.

This tells us that the inverse of 769 modulo 2818 is 1693, so we get, for
the first plaintext block,

P ≡ C1693 ≡ 15921693 ≡ 1615 modulo 2819.
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Aha! The number 1615 corresponds to the plaintext “po.” Bob’s complete
decryption goes as follows:

ciphertext: 1592 783 2264 924 211 44 1220 1548

to the 1693rd power: 1615 2305 1820 1520 805 1605 1516 1205

split apart: 16, 15 23, 5 18, 20 15, 20 8, 5 16, 5 15, 16 12, 5

plaintext: po we rt ot he pe op le

The number e that Bob needs to decrypt is traditionally called d,
for decryption exponent. So, to summarize, Alice and Bob need to pick
a prime p larger than the largest possible plaintext number. They also
need a key e such that the GCD of e and p − 1 is 1, so that e has an
inverse modulo p− 1. Then Bob needs to calculate the number d that is
the inverse of e modulo p− 1. Alice encrypts using the formula

C ≡ P e modulo p

and Bob decrypts using the formula

P ≡ Cd modulo p.

This cipher is called the Pohlig-Hellman exponentiation cipher. It was
invented by Stephen Pohlig and Martin Hellman in 1976 while they
were working on the first public-key cryptography systems, which we
shall explore in Chapter 7.

6.4 the discrete logarithm problem

Now we can encrypt and decrypt using the Pohlig-Hellman cipher.
What about Eve’s methods of attack? The way to measure resistance
to brute-force attacks is to see how many keys there are. The good keys
are the numbers between 1 and p − 1 that don’t share any factors with
p− 1. If p = 2819, then p− 1 = 2818 = 2× 1409, and 1409 is prime. So
e can be any number between 1 and 2818 that doesn’t have a factor of 2
or 1409, which means any odd number except 1409. There are 1408 such
numbers, so there are 1408 good keys. That’s not a huge number, but all
we have to do to get more is choose a larger modulus, which also lets
us use a larger block size. So brute-force attacks aren’t a big problem,
and ciphertext-only frequency attacks can be defeated by using a large
block size.
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What about known-plaintext attacks? For us to consider a cipher to
be resistant to known-plaintext attacks, it needs to be clearly harder for
Eve to recover the key than it is for Alice to encrypt or Bob to decrypt.
If it weren’t for the modular arithmetic, recovering the key would be
easy. In order to find the exponent of an exponential expression when
you know the base, you take a logarithm. If C = P e, then e = logP C.
In this case, Eve would see that the plaintext is 1615 and the ciphertext
is 1592. So she knows 1615e = 1592 and e = log1615 1592. However,
log1615 1592 is approximately 0.9981, and once again the modular arith-
metic has messed things up. The problem of finding a whole number e
such that C ≡ P e modulo p is called the discrete logarithm problem,
and this is what Eve needs to solve.

It’s not clear that solving the discrete logarithm problem is in fact
harder than encryption or decryption—if Eve has some examples of
P and C, her first step is to guess p, which she can do fairly easily by
looking at the largest ciphertext number in the message. Then she can
multiply P by itself repeatedly modulo p until she gets C, keeping track
of how many times it takes, and that will be e.

That seems remarkably like what Alice does to encrypt, right? The
issue is that multiplying P by itself e times is actually not the best way
for Alice to encrypt. Here’s a better way.

Consider e = 769. I reminded you in Section 4.1 that 769 really
means 7× 10× 10+ 6× 10+ 9. So

P 769 = P 7×10×10+6×10+9 =
((
P 10
)10)7 (

P 10
)6
P 9.

If you count this out, you’ll see that Alice needs only 46 multiplications,
not 768. On the other hand, Eve will need all 768, since she doesn’t
know e beforehand, so she can’t split it up this way. As of 2016, people
have been working hard for more than 35 years to find a fast way to
solve the discrete logarithm problem, and so far Eve is not even close to
being able to keep up with Alice and Bob. On the other hand, no one has
been able to prove that she can’t, either. Like several other problems we
shall see in the next few chapters, the discrete logarithm problem is one
that we think is hard, but no one knows for sure. We will talk more
about this problem in Section 7.2.
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6.5 composite moduli

You might think it’s kind of annoying to have to use a prime number
as the modulus in the Pohlig-Hellman cipher. Round numbers are easier
to work with, so maybe you’d rather use 3000 as the modulus when the
block size is 2. Alternatively, maybe the extra numbers in between the
largest block and the modulus were bothering you and you’d rather use
a modulus of exactly 2626. These are composite numbers, because they
are made up of more than one prime multiplied together.

Encryption using exponentiation is no problem with a composite
modulus. For example, if Alice wants to send Bob a message using a
modulus of 2626 and the same key, e = 769, as before, she converts the
plaintext to numbers and raises them to the 769th power as before.

plaintext: de co mp os in

numbers: 4, 5 3, 15 13, 16 15, 19 9, 14

together: 405 315 1316 1519 914

to the 769th power: 405 1667 1992 817 1148

plaintext: gc om po se rs

numbers: 7, 3 15, 13 16, 15 19, 5 18, 19

together: 703 1513 1615 1905 1819

to the 769th power: 1405 603 1615 137 1819

Decryption, once again, is the problem, and this time Fermat’s little
theorem is not going to come to our rescue. We can see the problem if
we try to go through an example similar to the one in Section 6.2. In-
stead of the 13-letter Hawaiian alphabet, we will use the 15-letter Maori
alphabet. Note that 13 is prime, but 15 = 3× 5 is composite. Since 15 is
not prime, not every number between 1 and 14 will be a good key. The
number 2 will be, though, since the GCD of 15 and 2 is 1.
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plaintext number times 2 ciphertext

a 1 2 E

e 2 4 I

h 3 6 M

i 4 8 O

k 5 10 R

m 6 12 U

n 7 14 NG

o 8 1 A

p 9 3 H

r 10 5 K

t 11 7 N

u 12 9 P

w 13 11 T

ng 14 13 W

wh 15 15 WH

For the prime case, we multiplied all the numbers in the left column
together and all the numbers in right column together, leaving out the
number at the end of each column because it reduces to zero. If we do
that here, we get

1× 2× 3× · · · × 14 ≡ (1× 2)× (2× 2)× (3× 2)× · · · × (14× 2) modulo 15,

1× 2× 3× · · · × 14 ≡ (1× 2× 3× · · · × 14)× 214 modulo 15.

Now we want to cancel out 1 × 2 × 3 × · · · × 14 from each side,
but unfortunately not all of those numbers have multiplicative inverses.
Only the ones that have a GCD of 1 with 15 have inverses, and those are
the only ones we can cancel out.

This is just like the problem with the bad keys. Since 15 = 3× 5, we
need to start over, leaving out the numbers that are multiples of 3, or 5,
or both.
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plaintext number times 2 ciphertext

a 1 2 E

e 2 4 I

i 4 8 O

n 7 14 NG

o 8 1 A

t 11 7 N

w 13 11 T

ng 14 13 W

The numbers on the left-hand side are still the same as the numbers on
the right-hand side, but in a different order. This kind of makes sense,
since if a number on the left was a multiple of 3 or 5, we would expect
2 times it to be one also. So we crossed out the same numbers from
each side.

If we try multiplying the columns again, we get

1× 2× 4× 7× 8× 11× 13× 14

≡ (1× 2)× (2× 2)× (4× 2)× · · · × (14× 2) modulo 15

1× 2× 4× 7× 8× 11× 13× 14

≡ (1× 2× 4× 7× 8× 11× 13× 14)× 28 modulo 15.

And now we can cancel 1× 2× 4× 7× 8× 11× 13× 14, for instance,
by multiplying by the inverse of each of them, so finally we get

1 ≡ 28 modulo 15.

Once again, the choice of 2 isn’t important; any good key will do.
But the choice of 15 clearly does make a difference—the 15 in the mod-
ulus produced an 8 in the exponent, and if we figure out how that
happened, we’ll be well on our way to figuring out how Bob can decrypt
his message.

6.6 the euler phi function

Let’s take a closer look at where the 8 came from in the last example.
We listed all of the numbers from 1 to 15,
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1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

and we got rid of all those that did not have a GCD of 1 with 15:

1, 2,�3, 4,�5,�6, 7, 8,�9,��10, 11,��12, 13, 14,��15.

This leaves 8 numbers behind. In other words, 8 is the number of whole
numbers less than or equal to 15 that have a GCD of 1 with 15.

In general, we can define φ(n) (that’s the Greek letter phi) to be the
number of positive whole numbers less than or equal to n that have a
GCD of 1 with n. For example, we have

n φ(n) n φ(n)

1 1 11 10

2 1 12 4

3 2 13 12

4 2 14 6

5 4 15 8

6 2 16 8

7 6 17 16

8 4 18 6

9 6 19 18

10 4 20 8

We already know what φ(n) should be if n is prime, since every whole
number will be counted except the number itself. Other than that, the
function seems pretty mysterious.

The person who figured out the pattern was the great genius
mathematician of the eighteenth century, in the way Gauss was for
the nineteenth and Fermat was in the seventeenth. His name was
Leonhard Euler, and while he was born in Switzerland, he did most
of his work at prestigious scientific academies in Russia and Prussia. In
1736 he was the first one to publish a proof of Fermat’s little theorem,
and he later published several more. In one of these papers, in 1763, he
introduced the function we now write as φ(n) and call the Euler phi
function. And, he uses this function to prove what we now call the
Euler-Fermat theorem.
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Theorem (The Euler-Fermat Theorem) For any positive whole num-

ber n and any k between 1 and n such that the GCD of n and k is 1,

kφ(n) ≡ 1 modulo n.

If n is a prime number, then φ(n) will be n − 1, and we have Fer-
mat’s little theorem again. And if n is 15, then φ(n) is 8 and we have
our example. Now we know what the Euler phi function is and we have
some idea what it’s good for. But if we have to calculate φ(n) by check-
ing a GCD for every number between 1 and n, that’s going to be a very
slow process.

Luckily, there’s an easier way. Let’s go back to our example and
watch a little more closely as we cross out the “bad keys.” The divisors
of 15 are 1, 3, 5, and 15, so we know we have to cross out the numbers
that are multiples of 3:

1 2 �3
4 5 �6
7 8 �9
10 11 ��12
13 14 ��15

Since we are crossing out every third number, there are 15/3 = 5
crossed-out numbers. We also have to cross out multiples of 5:

1 2 3 4 �5
6 7 8 9 ��10
11 12 13 14 ��15

This time we have crossed out every fifth number, and there are 15/5= 3
crossed-out numbers. We don’t have to cross out multiples of 15 because
any multiple of 15 is a multiple of 3 (and of 5), so it’s already been
crossed out.

So how many numbers are not crossed out? It should be 15 − 3 −
5= 7, but when we did it before, there were 8. Do you see why? It’s
because we crossed out 15, which is a multiple of both 3 and 5, twice.
So we have to add it back in, giving us 15− 3− 5+ 1 = 8 numbers not
crossed out. In general, we have this formula if p and q are two different
prime numbers:

φ(pq) = pq− p− q+ 1.
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With a little bit of algebra, we can rearrange that into the more common
form:

φ(pq) = (p− 1)(q− 1).

Now what about Bob and our cipher? In that case we had n =
2626 = 2× 13× 101, and if you work through all the crossings out, you
will see that

2626

2
+ 2626

13
+ 2626

101
= 13× 101+ 2× 101+ 2× 13

numbers get crossed out, but

2626

2× 13
+ 2626

2× 101
+ 2626

13× 101
= 101+ 13+ 2

got crossed out twice and have to be added back. However 1 number,
namely, 2626, has now been crossed out 3 times and added back in 3
times, so it has to come out again. In other words:

φ(2626) = 2626− 2× 13− 2× 101− 13× 101

+ 2+ 13+ 101− 1 = 1200.

In general, if p, q, and r are three different prime numbers,

φ(pqr) = pqr− pq− pr− qr+ p+ q+ r− 1

= (p− 1)(q− 1)(r− 1).

And you can probably see the pattern for any product of different
primes.

6.7 decryption with composite moduli

Now we should be able to figure out how to decrypt a message en-
crypted using the Pohlig-Hellman cipher and a composite modulus.
Once we know φ(n), the Euler-Fermat theorem tells us that

Pφ(n) ≡ 1 ≡ P 0 modulo n.

This means that if we are looking at an equation modulo n, then we
can treat the exponent as if we were working modulo φ(n). This is the
equivalent of what we did with Fermat’s little theorem earlier. In the
case of n = 2626, we have
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P 1200 ≡ P 0 modulo 2626.

If the encryption exponent is e = 769, the decryption exponent will be
the inverse of emodulo 1200—assuming there is one. Remember that for
e to have an inverse modulo 1200, the GCD of e and 1200 needs to be 1.
Otherwise, e is a bad key, and Alice shouldn’t have picked it in the first
place.

So Bob’s first step in decrypting the message is to use the Euclidean
algorithm to find the inverse of e = 769 modulo 1200.

1200 = 769× 1+ 431 431 = 1200− (769× 1)

769 = 431× 1+ 338 338 = 769− (431× 1)

= (769× 2)− (1200× 1)

431 = 338× 1+ 93 93 = 431− (338× 1)

= (1200× 2)− (769× 3)

338 = 93× 3+ 59 59 = 338− (93× 3)

= (769× 11)− (1200× 7)

93 = 59× 1+ 34 34 = 93− (59× 1)

= (1200× 9)− (769× 14)

59 = 34× 1+ 25 25 = 59− (34× 1)

= (769× 25)− (1200× 16)

34 = 25× 1+ 9 9 = 34− (25× 1)

= (1200× 25)− (769× 39)

25 = 9× 2+ 7 7 = 25− (9× 2)

= (769× 103)− (1200× 66)

9 = 7× 1+ 2 2 = 9− (7× 1)

= (1200× 91)− (769× 142)

7 = 2× 3+ 1 1 = 7− (2× 3)

= (769× 529)− (1200× 339)
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so

1 = (769× 529)+ (1200×−339)

and

1 ≡ 769× 529 modulo 1200.

The decryption exponent is d = 529, and the decryption goes as follows:

ciphertext: 405 1667 1992 817 1148

to the 529th power: 405 315 1316 1519 914

split apart: 4, 5 3, 15 13, 16 15, 19 9, 14

plaintext: de co mp os in

ciphertext: 1405 603 1615 137 1819

to the 529th power: 703 1513 1615 1905 1819

split apart: 7, 3 15, 13 16, 15 19, 5 18, 19

plaintext: gc om po se rs

Actually, I have cheated a bit. The Euler-Fermat theorem guarantees
only that the exponents behave like we want if the GCD of P and n is 1.
This isn’t true for some of our plaintext blocks, such as 1316; in fact the
GCD of 1316 and 2626 is 2. It turns out that if n is a product of different
primes, then decryption does always work properly, but I’m not going
to try to justify that in this book. If you want to see the proof, I’ve put
some references in the endnotes.

� � � sidebar 6.1. fee-fi-fo-fum � � �

If n is a product of primes that appear multiple times, then we

can still find a formula for φ(n), even though we won’t be

able to easily use the Pohlig-Hellman cipher. Suppose that

n= 12= 22× 3. The divisors of 12 are 1, 2, 3, 4, 6, and 12. When

we are crossing out bad keys, we need to cross out multiples of 2

and multiples of 3, and this will also eliminate multiples of 4, 6,

and 12. First we cross out all the multiples of 2:
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1 �2
3 �4
5 �6
7 �8
9 ��10
11 ��12

There are 12/2 = 6 of those. And then we cross out all the

multiples of 3:

1 2 �3
4 5 �6
7 8 �9
10 11 ��12

There are 12/3 = 4 of those. But both 12 and 6 have been crossed

out twice, since they are both divisible by 2 and by 3, so we have

to add them back. Thus φ(n) = 12− 6− 4+ 2 = 4. In general, we

have this formula if p and q are different prime numbers:

φ(paqb) = paqb − paqb

p
− paqb

q
+ paqb

pq
.

And we can rearrange that into the more common form:

φ(paqb) =
(
pa − pa

p

)(
qb − qb

q

)
= (pa − pa−1

) (
qb − qb−1

)
.

If n = pbqbrc is a product containing three different primes, then

φ(paqbr c) = (pa − pa−1
) (

qb − qb−1
) (

r c − r c−1
)
,

and so on.

For instance, if n = 3000 = 23 × 3× 53, then

φ(3000) = (23 − 22)× (3− 1)× (53 − 52) = 800.

Alice can encrypt a message with e = 769 and n = 3000:

plaintext: sy st em er ro rx

numbers: 19, 25 19, 20 5, 13 5, 18 18, 15 18, 24

together: 1925 1920 513 518 1815 1824

to the 769th power: 125 0 2073 368 375 2424
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If Bob uses the Euclidean algorithm, he will find that the inverse

of 769 modulo 800 is 129, so he attempts to decrypt using d = 129:

ciphertext: 125 0 2073 368 375 2424

to the 129th power: 125 0 513 2768 375 1824

split apart: 1, 25 0, 0 5, 13 27, 68 3, 75 18, 24

plaintext?: ay ?? em ?? c? rx

Remember that the Euler-Fermat theorem does not guarantee that

decryption will work properly unless the GCD of P and n is 1.

Two of the blocks come through all right: 513, which has a GCD

of 1 with 3000, and 1824, which has a GCD of 24 = 23 × 3 with

3000 but works anyway. However, most of the blocks come

through with incorrect letters or numbers that do not correspond

to letters at all. You might hope that reducing the individual

2-digit numbers modulo 26 would help, but it doesn’t. If the

system was working correctly, Bob would get the same numbers

that Alice started with. The general formula for φ(n) is useful for

other situations but not really for the Pohlig-Hellman cipher.

6.8 looking forward

So, you may ask, are exponentiation ciphers the state of the art in mod-
ern ciphers? As it happens, they aren’t actually used that much. Ciphers
such as AES appear to have just as good resistance to attacks and work
much faster, even with the trick that we have noted for speeding up
exponentiation. Instead, we shall see in Chapters 7 and 8 that the ideas
used in this cipher, and especially the hardness of the discrete logarithm
problem, turn out to be very important to a very exciting idea known as
public-key cryptography.

When Pohlig and Hellman were developing their cipher, they briefly
considered using composite moduli but rejected it on the grounds that
the convenience wasn’t worth the complication. They missed a bet, be-
cause exponentiation with composite moduli is a key ingredient in the
very important system that we will see in Section 7.4.
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On the other hand, Pohlig and Hellman also figured out how to use
their cipher with the sort of finite field arithmetic we saw in Section 4.5.
This eventually turned out to be another important idea because finite-
field arithmetic modulo 2 is a convenient way for computers to manip-
ulate bits, as we also saw in that section.



7
Public-Key Ciphers

7.1 right out in public: the idea of public-key ciphers

Throughout our discussion so far, we have tacitly assumed a few things
about Alice, Bob, and Eve. One is that before Alice and Bob start send-
ing messages, they need to get together somewhere where Eve can’t
overhear them—or otherwise find a method of communication that Eve
can’t listen in on—in order to agree on the key they will use. This seems
both reasonable and necessary to such a degree that for more than 2000
years, no one seriously questioned it. It might be inconvenient for Alice
and Bob to meet securely, but they have control over when it happens
and it doesn’t really have to last very long, so in most situations it is
feasible. Occasionally in history there have been cases where Alice and
Bob didn’t have anything prearranged; in an emergency Alice sent a se-
cret message anyway, in the hopes that Bob was smart enough to figure
it out and Eve wasn’t. That’s a big risk though and hardly the basis of a
good secure system.

In the fall of 1974, Ralph Merkle was finishing his last semester
as an undergraduate at the University of California, Berkeley, and tak-
ing a class in computer security. There was a little bit of cryptography
in the class, but DES had not yet been officially announced, and there
wasn’t an awful lot of cryptography to discuss. What there was caught
Merkle’s attention, however, and he began wondering if there was a way
around the assumption that everyone had always made. Was it possible
for Alice to send Bob a message without having them agree on a key be-
forehand? Obviously there would have to be a key, but maybe Alice and
Bob could agree on it through some process that Eve couldn’t under-
stand, even if she could overhear it. Merkle submitted a preliminary
idea, which he later described as “simple, but inefficient,” as one of two
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term-project proposals for the class. The idea really took only a page and
a half, but Merkle used four and a half more pages trying to justify the
importance of the problem, explain the difficulties, and improve on the
initial concept. And he couldn’t cite any sources, since apparently no
one had ever thought about the idea before. It’s not that surprising that
his professor was hopelessly confused and suggested that Merkle work
on his second-choice project. Instead Merkle dropped the class, but he
continued to work on the project.

Merkle’s idea, which is now commonly known asMerkle’s puzzles,
went through several revisions, but here is the version that was finally
published. Alice starts by creating a large number of encrypted messages
(the puzzles) and sends them to Bob, as in Figure 7.1. The encryption
function should be chosen so that breaking each puzzle by brute force
is “tedious, but quite possible.” Merkle suggested using a cipher with
a 128-bit key, specifying only a small fraction of all possible keys that
would be used. We will use an additive cipher in a very small example:

VGPVY QUGXG PVYGP VAQPG UKZVG

GPUGX GPVGG PBTPU XSNHT JZFEB

GJBAV ARSVI RFRIR AGRRA GJRYI

RFRIR AGRRA VTDHC BMABD QMPUP

AFSPO JOFUF FOUFO TFWFO UXFOU

ZGJWF TFWFO UFFOI RCXJQ EHHZF

JIZJI ZNDSO RZIOT ADAOZ ZINZQ

ZIOZZ IWOPL KDWJH SEXRJ IKAVV

YBJSY DSNSJ YJJSY BJSYD KNAJX

JAJSK TZWXJ AJSYJ JSFNY UZAKM

QCTCL RFPCC RUCLR WDMSP RCCLD

GDRCC LQCTC LRCCL JLXUW HAYDT

ADLUA FMVBY ALUVU LVULZ LCLUZ

LCLUA LLUGE AMPWB PSEQG IKDSV

JXHUU VYLUJ XHUUJ UDDYD UIULU

DJUUD AUTRC SGBOD ALQUS ERDWN

RDUDM SDDMS VDMSX RDUDM SDDMM

HMDSD DMRHW SDDMR DUDMS DDMAW

BEMTD MBEMV BGBPZ MMMQO PBMMV

AMDMV NQDMA MDMVB MMVUR YCEZC
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Bob

Puzzles, check number →
Makes puzzles

Alice

Figure 7.1. The beginning of Merkle’s puzzles.

Alice explains to Bob that each puzzle consists of three sets of num-
bers that Alice chose at random, all encrypted with the same key. The
first number is an ID number to identify the puzzle. The second set of
numbers is a secret key from a secure cipher, which Alice and Bob could
actually use to communicate. Merkle suggested a 128-bit cipher again,
this time allowing all possible keys. We will use a 2 × 2 Hill cipher for
our example. The last number is the same for all puzzles and is a check
so that Bob can make sure he has solved the puzzle correctly. In our ex-
ample, the check number is seventeen. Finally, the puzzles are padded
with random nulls so that they are all the same length.

Bob picks one of the puzzles at random and solves it by a brute-
force search, using the check number to make sure he did it correctly.
He then sends Alice the ID number encrypted in the puzzle, as shown
in Figure 7.2. For example, if Bob’s solution to one of the puzzles is

twent ynine teent wenty fives
evenf ourse vente enait puvfh

then he knows the ID number is twenty and the secret key is 19, 25, 7, 4.
He sends Alice twenty.
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Bob

Puzzles, check number →

← ID number

Picks a puzzle
↓

“Aha! I have the ID number
and the secret key!”

Makes puzzles

Alice

Figure 7.2. Bob solves the puzzle.

Alice has a list of the plaintexts of the puzzles, sorted by ID number:

ID secret key check

zero nineteen ten seven twentyfive seventeen

one one six twenty fifteen seventeen

two nine five seventeen twelve seventeen

three five three ten nine seventeen

seven three twenty fourteen fifteen seventeen

ten two seven twentyone sixteen seventeen

twelve twentythree eighteen seven five seventeen

seventeen twenty seventeen nineteen sixteen seventeen

twenty nineteen twentyfive seven four seventeen

twentyfour ten one one seven seventeen

So, she can also look up the secret key and find that it is 19, 25, 7, 4. Now
Alice and Bob both know a secret key to a secure cipher (Figure 7.3),
and they can start sending encrypted messages.

Can Eve figure out the secret key? She’s been eavesdropping on
Alice and Bob’s conversation as usual, so let’s see what she has over-
heard. As Figure 7.4 shows, she has the ciphertexts of all the puzzles
and the check number. She doesn’t know which puzzle Bob picked, but
she does know that the ID number was twenty. And she doesn’t have
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Bob

Puzzles, check number →

← ID number

Picks a puzzle
↓

“Aha! I have the ID number
and the secret key!”

↓
Secret key

Makes puzzles

Looks up the ID number
↓

Secret key

Alice

Figure 7.3. Alice and Bob both have the secret key.

Alice’s list of plaintexts. It looks like she has to solve all the puzzles be-
fore she can figure out which one Bob picked and get the secret key. This,
of course, is possible, but it will take her a lot longer than the procedure
took Alice or Bob. Alice had to encrypt 10 puzzles. Bob had to decrypt
1 puzzle (at worst) 25 times in his brute-force search. But Eve has to
decrypt (at worst) 10 puzzles 25 times each, or 250 total decryptions. A
modern (2016) desktop computer can do something very roughly in the
range of 10 million puzzle encryptions or decryptions per second. If
Alice generates 100 million puzzles, each with 100 million possible keys,
then it will take her computer and Bob’s computer less than a minute
each for what they need to do. Eve, on the other hand, will need to do
10,000 million million decryptions, which will take her computer about
1000 million seconds, or about 32 years. If Alice and Bob are concerned
that Eve has a faster computer, they just need to make more puzzles
with more possible keys.

The study of systems that allow Alice and Bob to communicate
securely without an initial secure meeting is now known as public-key
cryptography. Merkle’s puzzles is a public-key system, but it is not
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Makes puzzles

Looks up the ID number
↓

Secret key

Eve Bob

Puzzles, check number →

“Which puzzle do I solve?”
← ID number

“That doesn’t help?”

“I still don’t know!”

Picks a puzzle
↓

“Aha! I have the ID number
and the secret key!”

↓
Secret key

Alice

Figure 7.4. Eve can’t keep up.

itself a code or cipher. Neither Alice nor Bob can predict what the final
secret key is going to be, so they can’t use it as a secret message by it-
self. Rather, what we have is a key-agreement system. Key-agreement
systems are one major category of public-key systems, although we will
see others, including some that actually are ciphers.

Merkle recognized from the beginning that his scheme was less than
ideal. The puzzles take Alice a significant amount of time to set up, an
even more significant amount of space to store, and a still more signifi-
cant amount of time and/or data transfer capacity to transmit. Likewise
Bob needs a significant amount of time to solve the puzzles, and Alice’s
and Bob’s time commitment goes up at about the same rate that Eve’s
does. If Alice and Bob want to force Eve to spend twice as long, one of
them has to spend twice as long. Merkle knew that if a key agreement
system could be developed that forced Eve’s required time to grow at a
much larger rate compared to Alice and Bob, it would be much more
useful in practice.
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7.2 diffie-hellman key agreement

While Ralph Merkle was trying to get someone to take his idea seri-
ously, two other people were also thinking about public-key ideas. In
1972, Whitfield Diffie was a researcher at the Stanford Artificial In-
telligence Lab when his girlfriend, also a researcher at the lab, started
working on a project related to stream ciphers. Diffie became interested
in cryptography and then obsessed with it. Between 1972 and 1974 he
drove back and forth across the United States looking for the few experts
on cryptography who were not working for the NSA and would talk to
him about the subject. In 1974 Diffie heard that someone back at Stan-
ford was thinking about the same sorts of questions that he was. This
turned out to be Martin Hellman, whom we met briefly in Section 6.3.
Hellman was a former researcher at IBM who had gotten interested in
cryptography there and at MIT. In 1971 he became an assistant professor
at Stanford, which is where Diffie connected with him in 1974.

As Diffie later put it, his and Hellman’s discovery was the result
of “two problems and a misunderstanding.” The first problem was the
same one that Merkle was considering: how can two people who have
never met before carry on a secure conversation? The second problem
was that of authentication, or “digital signatures”: how could the recip-
ient of a digital message assure himself or herself and others that the
sender was who the message said it was? We will postpone the solution
until Section 8.4, but it’s worth noting that this is not really an issue
with traditional cryptography. The mere possession of the key to a ci-
pher or MAC serves as some assurance that the sender of the message
is a trusted member of your organization. The misunderstanding was
this: Diffie and Hellman assumed that users of the cryptographic system
would not want to have to trust any third party in order to complete
their connection. In Diffie’s later words:

What good would it do to develop impenetrable cryptosystems, I rea-

soned, if their users were forced to share their keys with a key distribution

center that could be compromised by either burglary or subpoena.

Perhaps it’s not surprising that for thousands of years everyone had
assumed that public-key cryptography was not possible, and all of a sud-
den in the early 1970s these three people independently started thinking
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about it. The microcomputer revolution was about to begin. People in
the know were already thinking that someday ordinary people were
going to be using them for communication, commerce, and who knew
what else. At the same time, the United States was in the midst of
the counterculture movement and the Watergate scandal. Distrust of
government and other large organizations was strong, and privacy and
self-reliance were on the minds of many, definitely including Whitfield
Diffie and Martin Hellman.

Diffie and Hellman wrote a paper explaining, among other things,
how useful public-key cryptography could be and some possible ways
that one might be able to go about it. But they admitted that they
didn’t really know how to make it work. In early 1976 a draft copy
of Diffie and Hellman’s paper managed to find its way into the hands
of Ralph Merkle. Merkle, excited to find someone else who understood
what he was working on, sent Diffie and Hellman a copy of the paper
he was writing on Merkle’s puzzles and expressed an interest in work-
ing together to improve his scheme. Diffie, Hellman, and Merkle ex-
changed letters through the summer of 1976, and Diffie and Hellman
started thinking about key-agreement systems as a particular way of
implementing their ideas.

One idea that both Diffie and Merkle had been thinking about for
several years was the use of things called one-way functions, which are
easy to compute in one direction and hard to compute in the other. In
fact, we’ve already seen in Section 6.4 that the exponentiation function,
which takes e to P e modulo p is easy to calculate, but it’s hard to find
e even if you know P e, P, and p—this is the discrete logarithm problem
from Section 6.4. So this function is an example of a one-way function.
Bob’s part of Merkle’s puzzles can also be thought of as a one-way func-
tion: taking a ciphertext and extracting the ID number is (relatively)
easy, but Eve’s job of taking the ID number and trying to figure out
which ciphertext it corresponds to is hard. Diffie, Hellman, and Merkle
knew of these examples and a few others, and one day in the summer
of 1976 Hellman managed to put it all together and make the expo-
nentiation function into the system that is now called Diffie-Hellman
key agreement. The paper announcing the new system has the mem-
orable title “New Directions in Cryptography” and starts, only a little
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Alice

Picks secret a Picks secret b

Bob

Figure 7.5. The beginning of Diffie-Hellman.

melodramatically, with the sentence, “We stand today on the brink of a
revolution in cryptography.”

Like Merkle’s puzzles, the Diffie-Hellman system starts out with Al-
ice and Bob setting out some ground rules. They need to pick a very
large prime number p. As of 2015, experts were recommending 600 dig-
its or more for acceptable security. Otherwise the discrete logarithm
problem is not hard enough. They also need to find a generatormodulo
p, which is a number g between 1 and p − 1 such that the numbers g,
g 2, g 3, . . . , gp−1, taken modulo p, cover all of the possible numbers
between 1 and p−1. For example, 3 is a generator modulo 7 because the
numbers

31 = 3, 32 = 9, 33 = 27, 34 = 81, 35 = 243, 36 = 729

turn out to be

3, 2, 6, 4, 5, 1 modulo 7,

which is all the possibilities. Conveniently, it turns out that every prime
has at least one of these generators, and they are not especially hard to
find. Furthermore, p and g do not have to be kept secret, so it’s fine to
just look them up in a table.

Now, as in Merkle’s puzzles, Alice picks some secret information.
In this case, it’s a number a between 1 and p − 1. Unlike in Merkle’s
puzzles, Bob also picks a secret number b between 1 and p − 1. This
gives us the situation shown in Figure 7.5.
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Picks secret a
↓

A ≡ ga modulo p

Picks secret b
↓

B ≡ gb modulo p
A →
← B

BobAlice

Figure 7.6. Alice and Bob exchange public information.

Picks secret a
↓

A ≡ ga modulo p

↓
Ba modulo p

=
gba modulo p

Picks secret b
↓

B ≡ gb modulo p

↓
Ab modulo p

=
gab modulo p

A →
← B

BobAlice

Figure 7.7. Alice and Bob both have the secret key?

Then Alice computes A ≡ ga modulo p. Bob computes B ≡ gb

modulo p. Alice sends A to Bob, and Bob sends B to Alice, as shown in
Figure 7.6.

Finally, Alice computes Ba modulo p and Bob computes Ab modulo
p, as shown in Figure 7.7. Alice has Ba ≡ (gb)a ≡ gba modulo p and Bob
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a = 94
↓

294 ≡ 2220 modulo 2819

↓
136794 ≡ 747 modulo 2819

b = 305
↓

2305 ≡ 1367 modulo 2819

↓
2220305 ≡ 747 modulo 2819

2220 →

← 1367

Alice Bob

Figure 7.8. A specific example of Diffie-Hellman key agreement.

has Ab ≡ (ga)b ≡ gab modulo p. But ab = ba, so these are the same.
Now Alice and Bob share a piece of secret information that they can use
as a key for some secure cipher.

For example, suppose Alice and Bob want to agree on a secret key
for the Pohlig-Hellman exponentiation cipher, as set out in Section 6.1.
The key needs to be a number between 1 and 2818, so for this example
they will use p = 2819 in the Diffie-Hellman system. It happens that 2 is
a generator modulo 2819, so Alice and Bob decide to use that. Alice picks
a secret number, say 94, and Bob picks a secret number, say 305. Then
the system proceeds as shown in Figure 7.8.

Now Alice and Bob both know the secret key, 747, and they can
use it for their exponentiation cipher. It’s worth noting once again that
Alice and Bob have no idea what the secret key will end up being.
In particular, it might not even be a good key for the exponentiation
cipher. If that is the case, they will both find out quickly. Then all
they have to do is try again with new secret numbers until they get a
good key.

How hard will it be for Eve to get the secret key? She knows g
and p, because Alice and Bob agreed on them over an insecure com-
munications line. She doesn’t know a or b, but she knows ga modulo
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Picks secret a
↓

A ≡ ga modulo p

↓
Ba modulo p

=
gba modulo p

Picks secret b
↓

B ≡ gb modulo p

↓
Ab modulo p

=
gab modulo p

A →
← B

“These must be
ga and gb modulo p.”

“How do I get gab?” 

Eve BobAlice

Figure 7.9. Can Eve figure out the secret key?

p and gb modulo p, as shown in Figure 7.9. The problem of getting the
secret key gab modulo p from ga and gb modulo p is called the Diffie-
Hellman problem. If Eve could figure out a or b, she could get the secret
key, but that would require solving the discrete logarithm problem, and
as we said in Section 6.4, that seems to be hard. Maybe there’s an-
other way to quickly solve the Diffie-Hellman problem—but once again,
people have been trying for 35 years with no success. So far, the Diffie-
Hellman problem is another one that we think is hard, but no one knows
for sure.

The record as of June 2016 for finding a discrete logarithm modulo
a large prime p was for the prime

p = �2766π� + 62762,

which is 232 digits, or 768 bits, long. The challenge was to take the
logarithm of

y = �2766e�
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with respect to the generator g= 11, and the result was announced on
June 16, 2016, by a group of researchers at the University of Leipzig
and the École Polytechnique Fédérale de Lausanne in Switzerland. The
project took about 16 months to complete.

An important use of Diffie-Hellman is as part of the security system
in one of the common types of virtual private networks. Virtual private
networks, or VPNs, are systems designed to let members of an organi-
zation securely access the organization’s network even from a location
where you can’t be sure someone isn’t tapping the Internet connection.
As I write this, a new version of the system which controls how data
flows across the Internet is being slowly deployed. The new system,
known as IPv6, is supposed to use that same Diffie-Hellman-based secu-
rity much more extensively to protect the communications that control
the Internet itself, as well as the messages of ordinary users.

7.3 asymmetric-key cryptography

Let’s recap where we are historically. By 1976, Diffie and Hellman, with
some help from Merkle, had come up with a practical public-key key
agreement system. They were still working on another angle, however.
One day in the summer of 1975, before Ralph Merkle had gotten them
starting thinking about key agreement, Diffie had a crucial insight about
another sort of system entirely. Traditional cryptography is symmetric
in that Alice and Bob have essentially the same key information avail-
able. In many cases, the key Alice uses to encrypt and the key Bob uses
to decrypt are the same, as in DES, AES, or shift register ciphers, among
others. In other cases, Alice uses a key to encrypt and Bob uses some
sort of inverse of the key to decrypt, as in the additive, multiplicative,
and exponentiation ciphers, among others. There are two versions of
the key, but if you know the encryption version, you can easily find its
inverse, and vice versa. These systems are now called symmetric-key
systems.

Diffie’s new idea was to have an asymmetric-key system. Each
party has two keys, an encryption key and a decryption key. This
time, the relationship between the keys is such that even if you know
the encryption key it is very difficult to find the decryption key. This is
the asymmetry: if Alice knows only the encryption key and Bob knows
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makes encryption key E
makes decryption key D

posts encryption key E

looks up Bob’s encryption key E

plaintext
↓ E

ciphertext
ciphertext →

ciphertext
↓ D

plaintext

BobAlice

Figure 7.10. Asymmetric-key cryptography.

only the decryption key, then Alice can only encrypt and Bob can only
decrypt. Of course, these keys don’t appear by magic. At some point
someone has to know both keys. Figure 7.10 shows how the system
generally works in practice. Bob creates both an encryption key and
a corresponding decryption key from some secret information. He posts
the encryption key in a public place, such as a Web site, and keeps the
decryption key secret. (For this reason the encryption key is often also
called a public key, and the decryption key is also called a private key.)

When Alice wants to send Bob a message, she looks up his encryp-
tion key and uses it to encrypt the message. When she sends it to Bob,
he can decrypt it using his decryption key, but no one else can decrypt
it. Notice that Alice can’t even decrypt her own message! If she loses the
plaintext, she’s out of luck, just the same as Eve is.

There have been lots of analogies proposed for asymmetric-key
cryptography, going back to Diffie and Hellman themselves. My favorite
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Figure 7.11. A nonmathematical asymmetric-key cryptographic system.

is a locked door with a mail slot in it, as shown in Figure 7.11. If Bob
publishes the address of his door (the encryption key), then anyone can
put a message through the slot. But only Bob has the key to the door
(the decryption key), so only Bob can get the message and read it. Once
Alice puts the message through the slot, even she can’t get at it.

Unfortunately, Diffie and Hellman had only a vague idea how to
actually make a system that would allow asymmetric encryption and
decryption keys. They had one-way functions, which were easy to com-
pute in one direction and hard in the other. But they needed more.
They needed a function that would be easy for Alice to compute in one
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direction (encryption using the encryption key) and hard for Eve to com-
pute in the other direction (cryptanalysis using the encryption key). But
the hard direction needed to be easy for Bob to compute using an
extra piece of secret information (decryption using the decryption key).
This would be a trap-door one-way function—the extra piece of secret
information would act like a trap door, letting Bob get at the plaintext
using a hidden passage. Furthermore, it must be hard for Eve to com-
pute the trap-door information from the rest of the system. The function
must be one way in that sense as well.

The 1976 paper of Diffie and Hellman’s that Merkle saw sketched
out the basic idea and some ways that one might possibly be able
to produce a trap-door one-way function, but neither that paper nor
“New Directions in Cryptography” had a practical asymmetric-key sys-
tem. In 1977 Merkle and Hellman would invent the first such system,
the “knapsack cipher,” but that system eventually turned out to have a
flaw that made it insecure. The honor of developing the first successful
asymmetric-key system would go to someone else.

7.4 rsa

At this point, developments in public-key cryptography were moving
incredibly fast. Toward the end of 1976, “New Directions in Cryptog-
raphy” came into the hands of Ron Rivest, an assistant professor of
computer science at MIT. Rivest recruited two colleagues at MIT, the
theoretically inclined Leonard Adleman and a visiting professor from
Israel, Adi Shamir. Rivest and Shamir were immediately excited about
the prospect of an asymmetric-key system; Adleman was less so. They
soon settled into a pattern where Rivest and Shamir would come up with
a scheme and Adleman would break it. At first, the breaks came almost
immediately, but after about 32 rounds of this, Rivest and Shamir came
up with something that took Adleman all night to find the flaw. From
then on, they were all in it together.

By this time Rivest, Shamir, and Adleman had started to look at a
one-way function different than Diffie and Hellman’s exponentiation.
The easy direction takes two large numbers and multiplies them to-
gether. The hard direction is the problem of factoring, that is, taking
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a large number and finding its factors. We factored small numbers in
Section 1.3 and it probably didn’t seem very hard, but for very large
numbers, we will see that factoring can be extremely difficult.

What the factoring function was missing was a trap door, and
Rivest, Shamir, and Adleman didn’t immediately see how to build in
one. On April 3, 1977, the three of them went to a Passover seder at the
home of a graduate student. As is traditional, a considerable amount of
wine was drunk, and Rivest and his wife arrived home rather late. While
his wife got ready for bed, Ron Rivest lay down on the couch and
thought about the problem. Before he went to bed he had made the
crucial breakthrough in what would become known as the RSA cryp-
tosystem: the one-way function of factoring would be the trap door in
the one-way function of exponentiation.

Here’s how Bob sets up the asymmetric keys. He starts by selecting
two different very large prime numbers, usually called p and q, which
will be the secret trap-door information. The product of those numbers,
called n, will be the modulus in the composite version of the exponenti-
ation cipher (Section 6.5). Current thinking is that n should be about the
same size as the modulus you would use in the Diffie-Hellman system;
otherwise the factoring problem is not hard enough. As I mentioned
earlier, this number should be 600 digits or more for acceptable security
as of 2015. The easiest way to get 600 digits for n is to pick p and q so
that they are 300 digits or more.

Bob can now find φ(n) = φ(pq) = (p−1)(q−1) using the formula
from Section 6.6. He picks an encryption exponent e such that the GCD
of e and φ(n) is 1 and finds the decryption exponent d = emodulo φ(n).
The modulus n and the encryption exponent emake up Bob’s public key,
which he can publish. The decryption exponent d is Bob’s private key,
which he needs to keep secret. He also needs to keep p, q, and φ(n)

secret. In fact, he no longer needs them and can destroy his records of
them if he wants.

Let’s do an example using much smaller numbers than one would
really use. Suppose Bob picks p = 53 and q = 71 for his primes; then
n = 53× 71 = 3763 and φ(n) = (53− 1)× (71− 1) = 3640. He could
pick e = 17 for his encryption exponent. Using the Euclidean algorithm,
Bob can now verify that the GCD of 17 and 3640 is 1 and that the inverse
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picks secret p and q
uses p and q to make public encryption key (n, e)

uses p and q to make private decryption key d

posts encryption key (n, e)

BobAlice

Figure 7.12. RSA set-up.

of 17 modulo 3640 is 1713. I’ll let you fill in the details if you want; it
shouldn’t take very long. Bob posts e and n in a public place and keeps
p, q, φ(n), and d secret, as shown in Figure 7.12.

When Alice wants to send Bob a message, all she has to do is look
up his public modulus n and his public encryption exponent e and then
encrypt a message using the exponentiation cipher. For example, with
our e = 17 and n = 3763, Alice can send a ciphertext as follows:

plaintext: ju st th ef ac to rs ma am
numbers: 10, 21 19, 20 20, 8 5, 6 1, 3 20, 15 18, 19 13, 1 1, 13
together: 1021 1920 2008 506 103 2015 1819 1301 113

to the 17th
power: 3397 2949 2462 3290 1386 2545 2922 2866 2634

Bob knows the decryption exponent d and the public modulus n, so
he can decipher the message by raising the ciphertext to the dth power
modulo n. In our example,

ciphertext: 3397 2949 2462 3290 1386 2545 2922 2866 2634
to the 1713th

power: 1021 1920 2008 506 103 2015 1819 1301 113
split apart: 10, 21 19, 20 20, 8 5, 6 1, 3 20, 15 18, 19 13, 1 1, 13
plaintext: ju st th ef ac to rs ma am

A diagram of the whole system looks like Figure 7.13.



Public-Key Ciphers • 219

Picks secret p and q
Uses p and q to make public encryption key (n, e)

Uses p and q to make private decryption key d

Posts encryption key (n, e)

C

↓ (n, d)
P ≡ Cd modulo n

Looks up Bob’s encryption key (n, e)

P

↓ (n, e)
C ≡ Pe modulo n

C →

BobAlice

Figure 7.13. The whole RSA system.

Once you have seen it and grasped the math involved, the idea
of RSA is really very simple. And when Rivest presented a written-up
version of the system to Shamir and Adleman on the morning of April 4,
it still sounded good, unlike many late-night ideas. The manuscript was
attributed to Adleman, Rivest, and Shamir, in alphabetical order, which
is the usual practice in mathematics and not uncommon in computer
science. Adleman objected, feeling that he couldn’t take credit for the
idea—all he had done was to fail to shoot it down like he had the oth-
ers. Rivest insisted, and eventually they settled on listing all three but
with Rivest first and Adleman last. Thus, Rivest, Shamir, Adleman is the
order of names that appeared on the MIT Technical Memo dated that
day, the paper that was published describing the result, and the patent
that was granted. And, thus, the common abbreviation for the system
became RSA.
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But before the academic paper was published or the patent granted,
RSA managed to go public in a big way. Rivest had sent a copy of
the Technical Report to Martin Gardner, who wrote a column called
“Mathematical Recreations” for Scientific American magazine. The
column was well known among both professional and amateur math-
ematicians. During its run from 1956 to 1981, it featured mathematical
games, toys, puzzles, and pictures, including flexagons, polyominoes,
tangrams, Penrose tilings, the artwork of M. C. Escher, fractals, and
mathematical magic tricks. Gardner was immediately intrigued by the
RSA system and set about writing a column explaining it, with Rivest’s
help. The column appeared in the August 1977 issue and proclaimed that
public-key cryptography “is so revolutionary that all previous ciphers,
together with the techniques for cracking them, may soon fade into
oblivion.” It included brief descriptions of the one-time pad, the contents
of “New Directions in Cryptography,” and RSA. It then gave a challenge
to the readers: a message encrypted using a 129-digit RSA modulus with
a $100 prize from Rivest, Shamir, and Adleman to the first person to
break it. Rivest is quoted as estimating that it would take 40 quadrillion
years to break the cipher using a 1977-era computer costing a million
dollars. It also included directions for how to get a copy of the tech-
nical report by sending a self-addressed, stamped envelope to Rivest at
MIT. According to Rivest, more than 3000 such requests were eventually
received.

Interest in RSA remained largely confined to mathematicians, some
computer scientists, and cryptography hobbyists until the invention
of the World Wide Web and the explosive growth in Internet com-
merce in the 1990s. At that point, people realized that sending someone
your credit card over the Internet was a perfect example of when you
might want to send a secure communication to someone you had never
met in person. Today, if you log into any secure web server, there
is a very good chance that your computer has looked up the Web
server’s RSA public key and used it to encrypt your connection to the
server.

But the Web page itself and the credit card number you want to
send back are usually not directly encrypted using RSA. This is because
asymmetric-key cryptography is almost always slower than symmetric-
key cryptography. Instead, your computer uses the server’s public key
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picks secret p and q
uses p and q to make public encryption key (n, e)

uses p and q to make private decryption key d

posts encryption key (n, e)

ke modulo n
↓ (n, d)

k ≡ (ke)d modulo n

C
↓ k
P

picks a secret AES key k

looks up Bob’s encryption key (n, e)

k
↓ (n, e)

ke modulo n

P
↓ k
C

ke modulo n →

C →

BobAlice

Figure 7.14. A hybrid RSA-AES system.

to encrypt some secret information that both computers can use to
generate a key for a symmetric cipher such as AES. This is called a
hybrid cryptographic system, and in practice it’s very similar to a key
agreement system. A simple version of a hybrid system might look like
Figure 7.14. Alice is playing the part of your computer and Bob is playing
the part of the server.
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7.5 priming the pump: primality testing

Before we look at how Eve can try to break an RSA-encrypted message,
I want to talk a little bit about how long it takes Bob to set up the key.
Notice first of all that for Bob to set up the key requires that he find two
prime numbers. How do you find a prime number? The most obvious
way is to pick a number and try to see if it has any factors, but we said
that factoring was a hard problem. In fact, if Eve can factor n, then she
will know p and q, which are Bob’s secret trap-door information. So,
she will be able to find d and read all the messages that were sent to Bob
using that key. If it takes Bob as long to set up a new key as it does for
Eve to recover it, that’s bad. In that case all Eve needs to get ahead is a
faster computer than Bob has.

Luckily, there are ways to find prime numbers that don’t require
trying to factor. Such tests have been known at least since the seven-
teenth century, but as a general rule they seem to have been considered
impractical, either because they were too slow, sometimes slower than
just trying to factor; because they worked only in special cases; or be-
cause they sometimes gave a wrong answer or no answer at all. Gauss
is often cited as having separated the problem of primality testing from
the problem of factoring. His quote on the subject, which is now rather
famous among mathematicians, is somewhat ambiguous, however:

The problem of distinguishing prime numbers from composite numbers

and of resolving the latter into their prime factors is known to be one of

the most important and useful in arithmetic. It has engaged the industry

and wisdom of ancient and modern geometers to such an extent that

it would be superfluous to discuss the problem at length. Nevertheless

we must confess that all methods that have been proposed thus far are

either restricted to very special cases or are so laborious that even for

numbers that do not exceed the limits of tables constructed by estimable

men . . . they try the patience of even the practiced calculator. . . . Further,

the dignity of the science itself seems to require that every possible means

be explored for the solution of a problem so elegant and so celebrated. For

these reasons we do not doubt that the two following methods, whose

efficacy and brevity we can confirm from long experience, will prove

rewarding to the lovers of arithmetic.
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Is Gauss referring to one problem or two? If you look at the two
methods that Gauss describes, the first one factors composite numbers at
the same time that it discovers that they are composite. So does the first
variation of the second method. Of the very last variation that Gauss
describes, he says, “. . . the second is superior in that it permits faster
calculation, but unless it is repeated over and over again it does not
produce the factors of composite numbers. It does however distinguish
them from prime numbers.” That is a mixed recommendation at best.

The necessary breakthrough that made RSA practical was the
realization that fast primality tests could be useful even if they didn’t
always give the right answer. This seems to have been first pointed out
by Robert Solovay and Volker Strassen in 1974, right around the time
Merkle, Diffie, and Hellman began thinking about public-key cryptogra-
phy. Their idea was to make a probabilistic primality test, that is, one
that makes a random choice somewhere in the procedure. This random
choice can allow a test to run very quickly, but there is a chance that it
will output the wrong answer.

I’m going to show you a probabilistic test based on Fermat’s little
theorem. The test is similar to Solovay and Strassen’s, but theirs is more
complicated and more accurate. The first crucial point is that Fermat’s
little theorem can be used as a “compositeness test”—it can tell us for
certain if a number is not prime. For example, suppose for the moment
that you didn’t knowwhether 15 is prime or composite. If 15 were prime,
then Fermat’s little theoremwould tell us that for any number k between
1 and 14, k14 ≡ 1 modulo 15. So we can just start trying numbers.
If k = 2, then 214 ≡ 4 modulo 15. But if 15 were prime, then this
shouldn’t happen. So we have shown that 15 is composite, and we say 2
is a witness for the compositeness of 15.

Not every number we try will work out so nicely. For example, if
k = 4, then 414 ≡ 1 modulo 15, even though we now know 15 isn’t
prime. We say 4 is a liar for the Fermat test, because it implies that 15
is prime when it isn’t. So, if we are testing a number n and kn−1 ≡ 1
modulo n, we can’t be sure whether n is prime or whether k is a liar. This
is where the random choice comes in. We will pick a bunch of different
k’s between 1 and n − 1. As soon as one is a witness, we know n is
composite. If none of them is, we will say n is probably prime. The more
k’s we check, the more likely it is that n is prime. But unless we check a
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very large number of k’s, we can never be certain that n is prime. And
if we check too many k’s, then the test no longer runs quickly enough.
That may seem unsatisfactory, but for cryptographers it’s good enough.
After all, the humans and/or computers doing the calculations aren’t
perfect anyway. There’s always a chance that a cosmic ray will come
along at just the wrong time and hit your computer in just the wrong
place. As long as the chance that your test is wrong is smaller than that,
it doesn’t really matter.

Let’s try the test on a couple of numbers that you probably can’t tell
immediately whether they are prime. For each nwe will pick 10 random
k’s unless we find a witness sooner.

Is n = 6601 prime?

k k6600 modulo 6601

1590 1

3469 1

1044 1

3520 1

4009 1

2395 1

4740 1

4914 3773

Because k = 4914 is a witness, n = 6601 is definitely not prime.

Is n = 7919 prime?

k k7918 modulo 7919

1205 1

313 1

1196 1

1620 1

5146 1

2651 1

3678 1

2526 1

7567 1

3123 1
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We have not found any witnesses, so n = 7919 is probably prime. If we
wanted to reduce the chance of a mistake, we would just need to test
more k’s.

As I mentioned, the Solovay-Strassen test is more complicated than
the Fermat test, but there are more witnesses, so it is more likely to
catch a composite number in the same amount of time. The test most
commonly used today, however, is more accurate than either of these
but almost as simple as the Fermat test. It was invented by Michael
Rabin in 1980, based on an idea from Gary Miller. And just to com-
plete the story, in 2002 the first nonrandomized primality test that was
significantly faster than factoring and could be proved to always be
correct was finally invented. The inventors were Manindra Agrawal,
a professor at the Indian Institute of Technology, Kanpur, and two of
his first-year graduate students, Neeraj Kayal and Nitin Saxena. This
came as a great surprise to many mathematicians, who did not expect
such a development for many years, if at all. However, the Rabin-Miller
test is still more commonly used in cryptography, since it is considered
accurate enough and it is faster in practice. A 300-digit number such as
might be used in RSA can easily be tested in a few seconds with an error
rate of less than 10−30.

To wrap this up, Bob should have no trouble finding two prime
numbers quickly. Multiplying them together is certainly fast, and the
rest is just picking any old e, making sure it has a GCD of 1 with n,
and finding the inverse. That’s just applying the Euclidean algorithm.
I mentioned in Section 1.3 that the Euclidean algorithm runs quickly.
In fact, Gabriel Lamé proved in 1844 that the number of division steps
required does not exceed 5 times the number of digits in the smaller
of the 2 numbers. When you think about the 600-digit numbers used
for RSA, that means less than 3000 divisions, which takes only a split
second on a modern computer, or even a good handheld calculator. If
Bob is unlucky, the first e he tries might be a bad key, but he’d have
to be really unlucky to need more than 2 or 3 tries. The whole process
of creating a secure RSA key usually takes less than 15 seconds on an
average personal computer.
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7.6 why is rsa a (good) public-key system?

Where does all of this leave Eve? She can look up Bob’s public in-
formation just the same as Alice, so she knows n and e, as shown in
Figure 7.15. And she sees C, which she knows is Pe modulo n for some
P. Can she invert the function and obtain P? This is called the RSA
problem. Like the Diffie-Hellman problem, we think it is hard, although
nobody knows for sure.

picks secret p and q
uses p and q to make public (n, e)

uses p and q to make private d

posts (n, e)

C
↓ (n, d)

P ≡ Cd modulo n

looks up (n, e)

P
↓ (n, e)

C ≡ Pe modulo n
C →

“This must be Pe modulo n.”

looks up (n, e)

“I don’t know d or ϕ(n).”
“How do I invert the function?”

Eve BobAlice

Figure 7.15. What Eve sees.



Public-Key Ciphers • 227

The most obvious way for Eve to attack the RSA problem is to fac-
tor n. Then she would know p and q, so she could calculate φ(n) =
(p−1)(q−1) and find d, just the same as Bob can. We have said several
times that factoring is a hard problem, but like the discrete logarithm
problem, no one knows for sure. On the other hand, people have been
working on factoring for even longer than on the discrete logarithm
problem. Fermat, Euler, Gauss, and others worked on it before mod-
ern computers. Over 35 years’ worth of mathematicians with computers
have worked on it, too. They have figured out how to do much better
than the obvious method of trying to divide by each prime in turn, but
Eve still can’t factor Bob’s n nearly as fast as Bob can create it.

In August of 1993, an international team of volunteers coordinated
by a few students and one professional mathematician decided to see
if they could harness the power of the Internet to factor the 129-digit
modulus from Martin Gardner’s column. They had faster computers
and better methods than in 1977, but maybe more importantly, they had
more computers. By the time the project successfully ended on April
26, 1994, the job had been divided up between more than 600 people
all over the world using more than 1600 computers, ranging from Cray
supercomputers to fax machines. The computers were programmed to
work on the problem only when they weren’t being used for something
else. After 8 months of work, the coordinators announced that the chal-
lenge had been solved. Ron Rivest awarded them the $100, which they
gave to the Free Software Foundation, and announced the solution of
the message:

the magic words are squeamish ossifrage

As I write this, the current factoring record is a 232-digit (768-bit)
number, whose factorization was finished on December 12, 2009. This
time a group of 16 researchers used specifically dedicated computing
time at 8 different institutions rather than opening up the project to
the Internet. The entire project took 3 months at one institution in the
summer of 2005, a similar amount of time at a second institution in the
spring of 2007, and about 16 months of intensive computation between
August 2007 and December 2009. The researchers concluded that 1024-
bit (roughly 300-digit) RSA moduli might be factorable in the next 5
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years and their use should be phased out before then. As of this writing,
no one has announced such a factorization, but it would not surprise me
if it happened soon.

What about other things Eve could try to do besides factoring n? She
could try to find φ(n) by some other method. Then she could compute
d without ever knowing the secret p and q. Eve knows that φ(n) counts
the number of positive whole numbers less than or equal to n that have
a GCD of 1 with n, but trying the Euclidean algorithm on each one of
those numbers is going to take even longer than factoring n by brute
force. Plus, if Eve can find φ(n), then she can factor n automatically.
How does that work? She knows

φ(n) = (p− 1)(q− 1) = pq− p− q+ 1 = n− (p+ q)+ 1.

If she knows φ(n) and n, then this equation lets her find p+ q. But then

(p− q)2 = p2 − 2pq+ q2 = p2 + 2pq+ q2 − 4pq = (p+ q)2 − 4n,

so if she knows p + q and n, she can find p − q. Finally, if she knows
p+ q and p− q, then

(p+ q)+ (p− q)

2
= p and

(p+ q)− (p− q)

2
= q.

People have tried to factor n this way and it doesn’t seem to be working
well, so this probably isn’t a good bet for Eve.

Can Eve find d directly without finding φ(n)? This too would give
her a way of factoring n. If she knows d and e, she can compute de− 1,
and since de ≡ 1 modulo φ(n),

de− 1 ≡ 0 modulo φ(n).

But this can happen only if de − 1 is a multiple of φ(n), and it turns
out that there is a probabilistic algorithm that factors n even if you have
only a multiple of φ(n) and not φ(n) itself.

That just leaves Eve trying to somehow solve the equation

C ≡ P e modulo n

without knowing d at all. Is that possible? It doesn’t seem very likely,
but after 30 years of trying no one has established either that it is or
it isn’t. In the sort of analogy you might see on a standardized test, the
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RSA problem is to the factoring problem as the Diffie-Hellman problem
is to the discrete logarithm problem: in both cases we think the two
problems are equivalent, and we think both are hard, but we can’t be
sure about any of it.

7.7 cryptanalysis of rsa

So if I’ve just said we don’t know any way Eve could break RSA fast
enough to be worthwhile, what is this section about? It would be more
accurate to say that we don’t know any way of breaking RSA in general.
In certain cases, Eve can break the system, especially if Alice and Bob
aren’t careful.

The first thing to watch out for is the small message attack. Sup-
pose Bob uses a modulus n = 3763 as in our earlier example, but to save
Alice some effort in her encryption, he decides to make the encryption
exponent e = 3 and tells her to use 0 instead of 26 for z. After all, we’re
not using 0 for any other letter.

Unfortunately, Alice needs to let Bob know that there are “zero ze-
bras in Zanzibar zoos.” Why is this unfortunate? Here’s the encryption:

plaintext: ze ro ze br as in

numbers: 0, 5 18, 15 0, 5 2, 18 1, 19 9, 14

together: 005 1815 005 218 119 914

to the 3rd power: 125 2727 125 693 3098 1614

plaintext: za nz ab ar zo os

numbers: 0, 1 14, 0 1, 2 1, 18 0, 15 15, 19

together: 001 1400 102 118 015 1519

to the 3rd power: 1 1585 42 2364 3375 581

Now Eve knows that e = 3, because that’s public information.
And 3 is kind of small compared to 3763. So she might suspect that
not all those blocks actually got wrapped around past 3763. In fact, if
Eve just takes the 1

3 power (or cube root) of each block using ordinary
(not modular) arithmetic, she’ll get



230 • Chapter 7

ciphertext: 125 2727 125 693 3098 1614

to the 1
3 power: 5.00 13.97 5.00 8.85 14.58 11.73

plaintext numbers: 005 ?? 005 ?? ?? ??

plaintext: ze ?? ze ?? ?? ??

ciphertext: 1 1585 42 2364 3375 581

to the 1
3 power: 1.00 11.66 3.48 13.32 15.00 8.34

plaintext numbers: 001 ?? ?? ?? 015 ??

plaintext: za ?? ?? ?? zo ??

Eve certainly can’t read the whole message, but if she has a suspi-
cion that Zanzabari zebras are under discussion, this could still be very
bad for Alice and Bob. The moral is to make sure your message blocks
are large enough, your encryption exponent is large enough, or both.

There is a similar chosen-ciphertext attack that can work if the
decryption exponent is too small. Suppose Eve knows that Bob is using
a modulus of n = 4089 and an encryption exponent of e = 2258, and
she wants to know Bob’s decryption exponent d. Instead of sending him
a real message, she can send him a “ciphertext” with a mix of correctly
encrypted blocks and random small numbers and hope she can find out
what they decrypt to. For example,

“ciphertext”: 2221 2736 1011 3 5 1474 1110 2859

to the d th power: 1612 501 1905 243 3125 2008 114 1119

“plaintext”: pl ea se b? ?y th an ks

The very worst thing Bob can do now is send Eve back a message,
maybe encrypted using her public key, saying: “I don’t understand the
two blocks in the middle of your message. How do I translate 243 3125
into letters?” Even if Bob doesn’t send Eve such a message, he could be
in trouble if she can get hold of the decrypted numbers in some other
fashion.

Now Eve knows that 243 ≡ 3d modulo 4089 and 3125 ≡ 5d modulo
4089. So she tries taking the base 3 logarithm of 243 using ordinary
arithmetic and gets

log3(243) = 5,
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which looks like it might be d. For some extra confirmation she tries the
base 5 logarithm of 3125 and gets

log5(3125) = 5.

So, she has found d. Two morals here: first, if you decipher a cipher-
text from someone and the plaintext seems garbled, never ever tell the
person what plaintext you got. This applies to almost every cipher ever,
since there are many other chosen-ciphertext attacks out there. And
second, don’t choose a d that’s too small. In fact, there are other low
decryption exponent attacks that make this insecure even if Eve can’t
use a chosen-plaintext attack.

Another possible attack is the common modulus attack. Suppose
Bob and Dave trust each other, but they don’t want to get their messages
mixed up. They might decide to use the same modulus n but different
values of e. This is bad.

For example, suppose n = 3763, Bob uses e = 3, Dave uses e = 17,
and Alice sends them both the same message:

plaintext: hi gu ys

numbers: 8, 9 7, 21 25, 19

together: 809 721 2519

to the 3rd power: 2214 3035 964

to the 17th power: 2019 1939 2029

Eve starts by using the Euclidean algorithm on the two values of e. If
they are relatively prime, then she will be able to write 1 with a “3 times
something” part and a “17 times something” part, as in Section 1.3:

17 = 3× 5+ 2, 2 = 17− 3× 5,

3 = 2× 1+ 1, 1 = 3− 2× 1

= 3× 6− 17× 1,

so
1 = (3× 6)+ (17×−1).

Eve knows that for the first plaintext block,

2214 ≡ P 3 modulo 3763 and 2669 ≡ P 17 modulo 3763.
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If she takes 22146 × 2019−1 modulo 3763, then she will have

22146×2019−1 ≡ (P 3)6(P 17)−1 ≡ P (3×6)+(17×−1) ≡ P 1 ≡ P modulo 3763.

And sure enough:

ciphertext 1: 2214 3035 964

ciphertext 2: 2019 1939 2029

ciphertext 1 to the 6th power: 229 1946 897

ciphertext 2 to the −1st power: 2682 1178 523

multiplied: 809 721 2519

split apart: 8, 9 7, 21 25, 19

plaintext: hi gu ys

The moral of this is not to share the same modulus, even if you trust
each other.

There is also a related message attack if Alice sends Bob two mes-
sages that are similar but not identical, using the same n and e. This
attack starts getting very difficult as soon as e is larger than 3, which is
one reason to choose e = 17, or e = 216 + 1 = 65537.

Speaking of related messages, there is an attack known as the broad-
cast attack that Eve can use if e people all use the same exponent e with
different moduli and Alice sends them each the same message or even
similar messages. Since using small e’s such as 3 or 17 has enough of a
speed advantage to make them common (see Section 7.4), it’s best not
to send similar messages to more than one person regardless. One way
to make messages less similar is to carefully add random padding bits to
the message before encryption and then ignore them after decryption.

Adding randomness also helps defeat a forward-search attack.
This is a type of probable word attack that can be a problem for
asymmetric-key systems in general. Suppose Eve has a guess as to the
plaintext that goes with a certain ciphertext from Alice to Bob. If there
is no randomness in the encryption, she can always see whether her
guess is correct. That’s because Eve can encrypt using Bob’s public key
just like anyone else! If there is no randomness in the encryption and
she starts with the same plaintext as Alice, she will get the same cipher-
text. If there is random padding and good diffusion, on the other hand,
two different encryptions of the same message should look nothing
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alike. Encryption that depends on random choices is called probabilistic
encryption; we will see another example in Section 7.8.

That’s a pretty good summary of some of the types of attacks on
RSA and the lessons you should draw from them. Most of the lessons
fall under the category of “don’t be lazy” and are fairly easy to remember
given that. If you’d like to see more details, look at the references in the
endnotes.

7.8 looking forward

Merkle’s puzzles were always what you might call a proof of concept—
even Merkle knew that they wouldn’t work in practice. Nevertheless,
they had a direct impact on the development of Diffie-Hellman key
agreement. In fact, Martin Hellman has said that it really ought to be
called the Diffie-Hellman-Merkle system, and the patent for the system
is in all three names.

Whatever you call it, Diffie-Hellman is still very much in use as
part of various security systems on the Internet. Remember, though,
that since it is a key-agreement system and not an encryption system, it
can’t be used by itself. People did eventually come up with asymmetric-
key encryption systems based on the discrete logarithm problem, and
we will see some of them in Chapter 8.

RSA is also very much in current use on the Internet, probably even
more than Diffie-Hellman. There are challenges to these two systems,
however. One drawback they share is that they require very large keys.
In Section 8.3 we will see an idea known as elliptic curve cryptography,
which attempts to get the same benefits and security as Diffie-Hellman
and RSA with smaller keys and possibly faster computations. There is
some movement toward new systems based on elliptic curve cryptog-
raphy, but for the moment the older public-key systems are still much
more common.

The Snowden documents released in 2013 created another concern
about security of Diffie-Hellman. Several internal NSA documents in-
dicated that the NSA was breaking VPN traffic encrypted with the
Diffie-Hellman-based security I mentioned in Section 7.2. In 2015 a team
of researchers in France and the United States announced a plausible
way that this could work. The attack, known as Logjam, has two parts.
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The first part is the realization that something I said in Section 7.2 is not
completely true. I said that it was fine to look up p in a table because
it does not have to be kept secret. The catch is that much of the work
in breaking the discrete logarithm problem can be done knowing only
p, not g, A, or B. That means that if Eve knows that many people are
looking up the same few primes p from the same table, she can have
computations ready for those primes before any messages are even sent.
When the messages are sent, she can break them much more quickly
than if she were starting from scratch. When the researchers analyzed
this precomputation attack, they realized that Diffie-Hellman with up
to 225-digit primes was probably vulnerable to academic teams, and
with up to 300-digit primes it was plausibly vulnerable to the NSA and
likely other governments as well. They also found that approximately
two-thirds of VPNs that they could scan preferred to use a commonly
known prime of 300 digits or fewer.

The second part of the attack applies only to secure Web browsing.
I mentioned that RSA is the most common way of encrypting Web con-
nections, but Diffie-Hellman is used as well. The researchers discovered
that if a Web server is using Diffie-Hellman, Eve can alter messages in
such a way as to trick the system into using a smaller prime number
p than Alice and Bob wanted. This is an example of a downgrade at-
tack; combined with the precomputation attack, it would make a Web
server vulnerable even if it used a large prime by preference. About 25%
of Web sites in the study could be downgraded to one of the 10 most
popular 300-digit primes, and about 8% could be downgraded to a 150-
digit prime.

Incidentally, a downgrade attack on Web servers that use RSA was
also discovered in 2015. This is called the FREAK attack. (FREAK stands
for Factoring RSA Export Keys.) Unlike Logjam, FREAK works only
against browsers and servers with certain software bugs. In general, it
has become clear that Diffie-Hellman and RSA keys with less than 300
digits should not be used under any circumstances. In addition to patch-
ing bugs, most software producers are now moving to disallow these
keys entirely and to encourage the use of keys at least 600 digits long.

Yet another challenge to Diffie-Hellman and RSA is related to
quantum computation, which we explore in Chapter 9. We will see
that if quantum computers became common, they would make both
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Diffie-Hellman and RSA very insecure. We will also see two broad
classes of replacement systems, with somewhat confusing names: post-
quantum cryptography involves attempts to design systems for any sort
of computer that could withstand quantum attacks, whereas quantum
cryptography tries to take advantage of quantum physics itself to design
new sorts of cryptosystems.

appendix a the secret history of public-key cryptography

Perhaps fittingly, public-key cryptography turns out to have both a pub-
lic history and a secret one. In 1997 the world learned that Merkle, Diffie,
and Hellman hadn’t been the only ones thinking about this strange idea
in the early 1970s. In fact, in 1969, before any of those three had started
their trip to fame, James Ellis also showed that public-key cryptogra-
phy was possible. His discovery, unlike theirs, would stay shrouded in
secrecy for almost 30 years.

And for a very specific reason: James Ellis worked for the Govern-
ment Communication Headquarters (GCHQ), more or less the British
equivalent of the NSA. In particular, he worked for the Communications
Electronics Security Group (CESG), which was (and is) responsible for
advising the British government on the security of electronic communi-
cations and data. Like Merkle and Diffie, Ellis started by thinking about
the question of whether it was really necessary for two people to ex-
change secret messages without a secretly arranged key. Unlike Diffie,
Ellis wasn’t worried about trusting a third party with the key distribu-
tion. After all, he worked for an organization that specialized in that
sort of thing. What he was worried about was the logistical problems of
key distribution. If thousands of people working for a large organization
needed to communicate and if it was the case that every pair needed
to keep their conversation secret from every other pair, then millions of
different keys would have to be dealt with.

Ellis, like everyone else, initially assumed that this situation was
inevitable. But he was doing some background reading and found an
anonymous paper describing a Bell Telephone voice-scrambler project
from the 1940s. This was a system for analog phone lines, and the idea
was that if Alice wanted to send Bob a message on a secure line, then
Bob, not Alice, would be responsible for adding random noise to the
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line during the transmission. If Bob kept track of what the noise was,
he could process the combined signal at his end to remove the noise
and recover the message. Eve would be unable to understand the noisy
signal, and Alice never needed to know exactly what Bob had done. Ellis
understood that this analog system wasn’t practical itself and couldn’t
be adapted exactly for digital use, but he got an important idea. Alice
could send Bob an encrypted message without knowing a decryption
key if Bob participated actively in the system.

Oddly enough, Ellis’ breakthrough came to him when he was lying
down, just as Ron Rivest’s did. Ellis laid down in bed one night and
started wondering whether it was possible to construct an asymmetric-
key system for digital communications similar to the voice scrambler
project. If so, only one private key for each participant would be
necessary—something much easier to deal with than a symmetric-key
system. Once he had properly framed the question, he had the answer
within a few minutes. It was possible, and he had an idea how to do it.

Like Merkle’s puzzles, Ellis’ initial idea was “simple, but inefficient”;
Ellis said, “It shows only that such a system is theoretically possible, and
not that a practical form exists.” Ellis started by supposing he had three
huge tables of numbers. Ellis thought of them as machines, for reasons
that will become clear in a bit, and labeled them M1, M2, and M3. I
like to think of them as huge books, or sets of books. In fact, think of
M2 as a whole big room full of codebooks. We haven’t talked much
about codes, but a codebook is really just a dictionary where words or
phrases are listed in alphabetical order. Instead of a definition, each en-
try gives you a codegroup, say a 5-digit number, corresponding to the
word or phrase. Each huge codebook in room M2 is completely differ-
ent from every other, and each one has a volume number. This room is
going to be the encryption room. RoomM3, the decryption room, is very
similar, except that the codebooks are in order of codegroups instead of
alphabetically. Each encryption codebook in M2 has a corresponding
decryption codebook in M3, and vice versa. For reasons that will be-
come clear in a moment, the volume numbering system is completely
different in M2 than in M3. Luckily for Alice and Bob, whatever insane
librarian has numbered these books has also prepared a huge index vol-
ume, M1. Volume M1 lets you look up a decryption volume number and
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picks private decryption key d
uses d and M1 to look up
public encryption key e

C
↓ (M3, d)
P

“I have a message for you.”

P
↓ (M2, e)
C

C →

← e

BobAlice

Figure 7.16. Ellis’ public-key system.

find out the corresponding encryption volume number. But, and this is
important, there’s no inverse index going the other way.

So now when Alice sends Bob a message, she starts by asking Bob
for an encryption key. Bob picks a decryption volume number d at ran-
dom, looks it up in volume M1, and sends the appropriate encryption
key e to Alice, while keeping d private. Alice goes to RoomM2, finds en-
cryption volume e, and uses it to encrypt her message, which she sends
to Bob. Bob goes to room M3, finds decryption volume d, and uses it
to decrypt the message. Figure 7.16 shows the process, which should
remind you a lot of things we’ve seen before.

What about Eve? If she has been listening in to the conversation,
she knows e and the ciphertext. She has three options, none of which are
good. She can go to room M2, find volume e, and then search through
it for each codegroup in the ciphertext. Since the codegroups are in no
particular order, she is probably going to have to search most, if not
all, of the codebook. Or, she can go to room M3 and try to decrypt
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the ciphertext with every possible book until she finds one that gives
a sensible plaintext. Or, lastly, she could get the index volume M1 and
search through it until she finds the decryption volume number d that
corresponds to encryption volume number e. Because there’s no inverse
index to M1, she is again probably going to have to search most of the
book, unless she gets lucky. If both the number of volumes and the size
of each volume are large enough, all these options are pretty bad.

This isn’t anything like a practical system, even if it were com-
puterized. It would be easier to store the large codebooks if they were
on a computer, but Eve could search them faster, so that doesn’t help.
When Ellis referred to M1, M2, and M3 as “machines,” he was hoping
that some “process” could be found that would act the same way as
the codebooks or the tables without actually having to store all of the
information. Despite the use of the word machine, this process would
probably be mathematical rather than mechanical. However, Ellis was
an engineer by training and didn’t really feel up to the mathematical
subtlety he suspected would be necessary. “Because of the weakness of
my number theory,” he later said, “practical implementations were left
to others.”

The project was not assigned much priority at CESG or GCHQ over
the next few years. A few mathematicians tried to find a flaw in the
reasoning, without success. A few people tried to find a practical mathe-
matical system to implement it, also without success. This is how things
stood in late 1973, when Clifford Cocks was hired at CESG. Unlike
Ellis, Cocks was a trained mathematician, with an undergraduate degree
from Cambridge and a year of graduate school at Oxford. Cocks was
assigned a mentor, who one day described Ellis’ idea during a tea break.

Cocks had a few things going for him as he tried to attack the prob-
lem. First, he not only had mathematical training, but he had done
research in exactly the kind of mathematics that has become the foun-
dation of public-key cryptography. Second, he hadn’t seen Ellis’ paper
or any of the other work that had been previously done on the problem,
so he could get a fresh start. Third, the problem had been posed as a puz-
zle rather than an assignment, so there was no pressure. And finally, as
he later said, “I suppose it was actually also helpful that I wasn’t doing
anything that evening.” That evening after work, Cocks went back to his
rented room and worked out a system that was the same in all essential
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ways as the system that later became known as RSA. Bob’s private p and
q take the place of the decryption volume number in our description of
Ellis’ system, and his public n takes the place of the encryption volume
number. In Cocks’ version of RSA, the encryption exponent e is equal to
n, so the encryption key only has one part. The “machines” M2 and M3

are modular exponentiation, and M1 is multiplying p and q together to
get n.

The security rules that went with Cocks’ job forbade him from
writing down anything job related while he was at home. Luckily, the
system was simple enough that he still remembered it in the morning,
and he wrote up a short paper at work the next day. Cocks’ mentor was
excited, and Ellis, when he heard, was happy but cautious. A third per-
son who was interested was Malcom Williamson, Cocks’ friend since
childhood, who also worked at CESG. Williamson hadn’t heard about
Ellis’ idea before and was particularly skeptical. He was so skeptical that
after Cocks told him about the idea, Williamson went home and tried
to prove that it couldn’t work. That failed, of course, but late that night,
after 8 or 12 hours, he realized he had an entirely different way of im-
plementing an idea similar to Ellis’. He had discovered what we now
call the three-pass protocol, which is a public-key system closely related
to the Pohlig-Hellman cipher. (See Section 8.1 for the three-pass proto-
col.) Again, he couldn’t write it down until the next day at work, and
it would not be written up as a complete paper for a few months, until
January 1974. In the meantime he had discussed the three-pass protocol
with Ellis, who had evidently started to become less cautious and refined
the ideas. After some more conversation, Williamson had yet another
idea for a “cheaper and faster” method of public-key encryption, which
turned out to be exactly the idea that Diffie and Hellman had.

The search for a cheaper and faster method turned out to be poten-
tially important. The general attitude at GCHQ had by now shifted from
regarding public-key encryption, or “non-secret encryption,” as Ellis had
dubbed it, as impossible to regarding it as impractical. Williamson, on
the other hand, was having second thoughts about the entire thing. By
the time he wrote up his second paper, on the key-agreement system,
he wrote, “I have come to doubt the whole theory of non-secret en-
cryption.” The problem that bothered him was the inability to either
prove or disprove the difficulty of the discrete logarithm problem and the
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factoring problem. For this reason, he said, he had delayed for 2 years
in writing up this second paper. In the end, no one inside GCHQ did
anything about implementing a real public-key system.

In retrospect, that was not too surprising. A government security
agency was probably the wrong place for a public-key system. While
it would have certainly helped with the key-distribution problem, the
real advantage in a public-key system is for two people to communicate
without meeting first. Two people who work for the same government
agency probably won’t have that issue. And such agencies are even more
cautious than average when it comes to new and untried cryptographic
systems. If someone in 1977 had discovered a fast way to factor numbers
or solve the discrete logarithm problem, there would have been some
very sorry people around MIT and Stanford. But if GCHQ or the NSA
had converted their systems to public-key and a year later it had been
broken, it would have been a potential national security disaster.

So nothing happened. In 1977, when Rivest, Shamir, and Adleman
applied for their patent, Williamson tried to get it blocked, but his supe-
riors decided not to do anything. In 1987 Ellis decided that “no further
benefit can be obtained from continued secrecy” and wrote up his ver-
sion of events in a paper. His superiors disagreed, and the paper was
declared classified for the next 10 years. Finally, on December 23, 1997,
GCHQ posted 5 papers on its Web site: Ellis’ original paper, Cocks’
paper, Williamson’s two papers, and Ellis’ “History of Non-Secret En-
cryption.” Unfortunately, it was too late for Ellis, who had died on
November 25, barely a month before the world was to find out what
he had done.
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Other Public-Key Systems

8.1 the three-pass protocol

Now we know two ways that Alice can send Bob a secret message se-
curely without a secure meeting first. They can use a key-agreement
system to choose a secret key for a symmetric-key cipher, or they can
use an asymmetric-key system, where Alice knows Bob’s public encryp-
tion key but only Bob knows the private decryption key. There’s a third
way that uses symmetric-key cryptography to allow Alice to send Bob a
message without them exchanging or agreeing on any keys at all, pub-
lic or private. It’s called the three-pass protocol; it’s too inefficient for
general use, but it’s interesting and occasionally handy.

If we can think of asymmetric-key cryptography as a locked door
with a mail slot in it, then an analogy for symmetric-key cryptography
might be a suitcase with a padlock and two identical keys, as shown in
Figure 8.1. If Alice wants to send a message to Bob, she puts it in the
suitcase and locks it with the padlock. When Bob gets the suitcase, he
unlocks the padlock with the other key and takes the message out and
reads it.

Now suppose the latch of the suitcase has room to hold either or
both of two padlocks independently, and Alice and Bob each have a
padlock with a different key. Alice puts the message in the suitcase, puts
her padlock on it, and sends it to Bob, as in Figure 8.2. This is pass 1 of
the three-pass protocol.

Bob can’t open Alice’s padlock, because he doesn’t have the key.
Instead, he puts his own padlock on it and sends it back to Alice. This is
pass 2, as shown in Figure 8.3.

Now Alice unlocks her padlock and sends the suitcase back to Bob,
as shown in Figure 8.4. This is pass 3. Note that the suitcase is still locked



Figure 8.1. Symmetric-key cryptography.

Figure 8.2. Pass 1 of the three-pass protocol.

Figure 8.3. Pass 2 of the three-pass protocol.



Other Public-Key Systems • 243

Figure 8.4. Pass three of the three-pass protocol.

with Bob’s padlock, so Eve can’t open it. Now Bob can unlock his own
padlock and read the message. Along the way, the suitcase was never
sent without a lock, and Alice and Bob never had to share or exchange
any sort of key.

In order for this to work, you need a symmetric-key cipher with
two specific properties. The first is that Bob’s encryption and Alice’s en-
cryption can’t get in each other’s way—that would be as if Bob looped
his padlock around Alice’s, so she couldn’t unlock it. In technical terms,
Alice’s encryption and Bob’s encryption have to commute, as we dis-
cussed in Section 3.4. Doing Alice’s encryption first and then doing
Bob’s has to be the same as doing them the other way around. Only
a few of the ciphers we have studied have this property, including ad-
ditive ciphers, multiplicative ciphers, and polyalphabetic and stream
ciphers based on these. Affine ciphers, Hill ciphers, and transposition
ciphers sometimes work, but only if Alice and Bob restrict themselves
to a fairly limited set of keys. None of the symmetric-key ciphers we
have seen intended for use with modern computers have this property
except for the Pohlig-Hellman exponentiation cipher.

To see the other property needed, consider what happens if Alice
and Bob use an additive cipher. Let a be Alice’s key and b be Bob’s, and
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Picks secret a

Plaintext P
↓

P + a modulo 26

↓
((P + a) + b) – a ≡ P + b modulo 26

Picks secret b

↓
(P + a) + b modulo 26

↓
(P + b) – b ≡ P modulo 26

→

←

→

BobAlice

Figure 8.5. The three-pass protocol with additive encryption.

let P be the first letter of plaintext. Then the three-pass protocol looks
like Figure 8.5.

Here’s the problem: after passes 1 and 2, Eve has P+ a and
(P+ a)+ b modulo 26. So she can mount a known-plaintext attack and
recover b ≡ ((P + a) + b) − (P + a) modulo 26. Then she can use b to
decrypt the message from the third pass and get P ≡ (P+ b)− b mod-
ulo 26, as shown in Figure 8.6. So, in addition to being commutative,
Alice’s and Bob’s encryption needs to be resistant to known-plaintext
attacks. That leaves only one option from the ciphers we know, namely,
the Pohlig-Hellman cipher.

Figure 8.7 shows the three-pass protocol done properly, using the
Pohlig-Hellman cipher. Alice and Bob have to agree on the same large
prime p, but that’s all. In some ways this can be thought of as a combi-
nation of the Pohlig-Hellman exponentiation cipher and Diffie-Hellman
key agreement.



Picks secret a

Plaintext P
↓

P + a modulo 26

↓
((P + a) + b) – a ≡ P + b modulo 26

Picks secret b

↓
(P + a) + b modulo 26

↓
(P + b) – b ≡ P modulo 26

→

← 

((P + a) + b) – (P + a) ≡ b modulo 26

→

(P + b) – b ≡ P modulo 26

Eve BobAlice

Figure 8.6. The three-pass protocol with additive encryption is insecure.

Picks secret a

Plaintext P
↓

Pa modulo p

↓
((Pa)b)a– ≡ Pb modulo p

Picks secret b

↓
(Pa)b modulo p

↓
(Pb)b– ≡ P modulo p

→

←

→

BobAlice

Figure 8.7. The three-pass protocol with Pohlig-Hellman encryption.
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Suppose Alice wants to send Bob a message using this system. They
agree to use a block size of 2 and convert letters to numbers the same
way they did in Section 6.1, and they also agree to use the same prime
modulus p = 2819 that they did in that section. Alice picks a = 113 for
her secret key and verifies that a has an inverse modulo 2818, namely,
a = 2419. Bob picks b = 87 for his secret key, and verifies that b like-
wise has an inverse modulo 2818, which is b = 745. Then the protocol
proceeds like this:

plaintext: te ll me th re et im es

numbers: 20, 5 12, 12 13, 5 20, 8 18, 5 5, 20 9, 13 5, 19

together: 2005 1212 1305 2008 1805 520 913 519

Alice sends Bob:

to the 113th power: 1749 1614 212 774 2367 2082 2156 1473

Bob sends Alice:

to the 87th power: 301 567 48 1242 1191 1908 2486 986

Alice sends Bob:

to the 2419th power: 1808 2765 289 692 2307 2212 1561 2162

Bob decrypts:

to the 745th power: 2005 1212 1305 2008 1805 520 913 519

split apart: 20, 5 12, 12 13, 5 20, 8 18, 5 5, 20 9, 13 5, 19

plaintext: te ll me th re et im es

Now that we are using an exponential cipher, how hard is it for Eve
to read the message? She could try to mount the same known-plaintext
attack as before, but that would require solving the discrete logarithm
problem. As in the Diffie-Hellman problem, Eve has extra information
here. So as in the Diffie-Hellman problem, it might be possible to break
the three-pass protocol without solving the discrete logarithm problem.
No one knows of any way to do this, and it doesn’t seem very likely.
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In fact, it turns out that in a certain precise sense, solving the Diffie-
Hellman problem and breaking the three-pass protocol are about equally
difficult: if Eve can do one quickly, then she can do the other quickly,
and vice versa.

The encryption system I’m calling the three-pass protocol is known
by several names, including Shamir’s three-pass protocol, the Massey-
Omura system, and no-key cryptography. Adi Shamir invented this
system in the context of a way of playing “mental poker”—that is, Alice
and Bob want to play a game of poker over the phone without exchang-
ing physical cards and without either player being able to cheat. It was
published in a technical report in 1979 and then in a collection of arti-
cles dedicated to Martin Gardner in 1981. Sometime shortly after that,
James Omura, who was then a professor of electrical engineering at
UCLA, heard about the basic idea of Shamir’s system but not about the
use of the Pohlig-Hellman cipher and independently worked out the rest
of the details. He then worked with James Massey, a former colleague
at UCLA who had moved to the Swiss Federal Institute of Technology
in Zurich, to adapt the protocol to the finite fields modulo 2 version of
the Pohlig-Hellman cipher and also improve the speed of computer cal-
culations in these fields. Massey gave a talk on these combined ideas
at a major European cryptography conference in 1983, but no proceed-
ings for the conference were published. The first time that Massey and
Omura’s version of the system appeared in print seems to have been
their patent application, filed in 1982 and granted in 1986.

The three-pass protocol requires a lot of modular exponentiation,
which makes it considerably slower than using Diffie-Hellman to agree
on a key for a cipher like AES and then exchanging AES messages. It also
requires sending more information back and forth, so all in all it’s not
very practical except in a few specialized situations, like mental poker.
It’s a very cool idea, though.

8.2 elgamal

As we have seen, although the first practical public-key cryptography
system (Diffie-Hellman key agreement) used the difficulty of the discrete
logarithm problem to justify its security, the first successful asymmetric-
key cryptography system used the difficulty of the factoring problem
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instead. It wasn’t until 1984 that Tahir Elgamal, an Egyptian graduate
student working with Martin Hellman at Stanford, came up with an
asymmetric-key system related to discrete logarithms. We will see the
delay is not too surprising, since ElGamal encryption requires a few
ideas that were absent from earlier public-key systems.

Since this is an asymmetric-key system, Bob starts by setting up the
keys. As in Diffie-Hellman, he picks a very large prime p and a generator
g modulo p. Then he picks a private key b between 1 and p − 1 and
computes B ≡ gb modulo p. The numbers p, g, and B become Bob’s
public key, which he publishes. Also as in Diffie-Hellman, p and g don’t
have to be secret, and there’s no harm in Bob using one that someone
else is already using.

Since Bob is feeling lazy in our example, he’s going to keep using
the values p = 2819 and g = 2 that he and Alice used for Diffie-Hellman
in Section 7.2. He decides to pick the private key b = 2798 and calculates
B ≡ 22798 ≡ 1195 modulo 2819. He posts p, g, and B in a public place
and keeps b secret.

If Alice wants to send Bob a message block with plaintext P, she
looks up his public key. Then she picks a random number r between 1
and p − 1. This number is called a nonce, meaning something that is
made to be only used once. She uses r to compute two more numbers,
R ≡ gr modulo p and C ≡ PBr modulo p. These two numbers, R and
C, together form the ciphertext block that she sends to Bob. Alice keeps
r secret; in fact she is done with it and can destroy the records of it if
she wants.

Why does Bob need two numbers in order to decrypt the ciphertext?
The idea is that Br is a blind, or mask, which disguises the plaintext P.
In order to separate the blind from the ciphertext, Bob needs R, which is
a hint. This idea of a blind and a hint is one of the new ideas that was
necessary before a system like ElGamal could be invented.

So Alice might proceed as follows:
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nonces r: 1324 2015 5 2347 2147
hints gr: 2321 724 32 1717 2197
blinds Br: 93 859 1175 229 1575
plaintext: al lq ui et fo
numbers: 1, 12 12, 17 21, 9 5, 20 6, 15
together: 112 1217 2109 520 615

times blind: 1959 2373 174 682 1708
ciphertext: 2321, 1959 724, 2373 32, 174 1717, 682 2197, 1708

nonces r: 1573 2244 2064 2791 1764
hints gr: 1050 941 1336 1573 188
blinds Br: 2395 798 1192 1215 1786
plaintext: rt he no nc ex
numbers: 18, 20 8, 5 14, 15 14, 3 5, 24
together: 1820 805 1415 1403 524

times blind: 726 2477 918 1969 2775
ciphertext: 1050, 726 941, 2477 1336, 918 1573, 1969 188, 2775

Notice that the ciphertext that Alice gets depends on the random
nonces that she picks. That makes ElGamal a probabilistic encryption
method, like we saw in Section 7.7. We will see that the nonces in El-
Gamal encryption are necessary to prevent a specific attack, but they
also protect against the general forward search attack mentioned in that
section.

To decrypt, Bob calculates CRb modulo p. Since R ≡ gr,

Rb ≡ (gr)b ≡ (gb)r ≡ Br modulo p,

so

CRb ≡ (PBr)Br ≡ P modulo p,

and Bob gets the plaintext back.
In our example, Bob’s decryption looks like this.

ciphertext: 2321, 1959 724, 2373 32, 174 1717, 682 2197, 1708
hints R: 2321 724 32 1717 2197

blinds Rb: 93 859 1175 229 1575

CRb: 112 1217 2109 520 615
split apart: 1, 12 12, 17 21, 9 5, 20 6, 15
plaintext: al lq ui et fo

ciphertext: 1050, 726 941, 2477 1336, 918 1573, 1969 188, 2775
hints R: 1050 941 1336 1573 188

blinds Rb: 2395 798 1192 1215 1786

CRb: 1820 805 1415 1403 524
split apart: 18, 20 8, 5 14, 15 14, 3 5, 24
plaintext: rt he no nc ex
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Picks p and g
Picks secret b

Uses b to make public B ≡ gb modulo p

Posts public encryption key (p, g, B)
Looks up Bob’s encryption key (p, g, B)

Picks random secret r

r

↓  (p, g)
R ≡ gr modulo p

Plaintext P
↓  (p, B, r)

C ≡ PBr modulo p
(R, C) →

(R, C)
↓  (p, b)

P ≡ CR—b modulo p

BobAlice

Figure 8.8. The ElGamal encryption system.

Note that Bob never finds out the nonces that Alice used, which isn’t
generally important one way or the other. A diagram of the whole
system looks like Figure 8.8.

Another way of looking at ElGamal encryption is to think of Bob’s
public key as the first half of a Diffie-Hellman key agreement. Alice’s
random nonces and hints form the second part of the key agreement,
and the keys that are created are used as a one-time keystream in
a multiplicative cipher modulo p. Bob uses the hints to generate the
same keystream on his end and then decrypts the multiplicative ci-
pher. If Eve has a reason to think that Alice is using the same nonce or
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sequence of nonces more than once, then she knows that the keystream
will also have repetitions. This is essentially the same as reusing a one-
time pad, and Eve can make the same sort of attack as the one we saw in
Section 5.2. Assuming Alice doesn’t reuse a nonce, for Eve to get P from
the public p, g, and B and the ciphertext R and C is equivalent to finding
Br ≡ grb modulo p from p, g, B ≡ gb modulo p, and R ≡ gr modulo p.
In other words, it’s exactly the same as the Diffie-Hellman problem.

Since ElGamal was never patented, unlike Diffie-Hellman and
RSA, it has been a common option in free and open-source encryption
programs such as Pretty Good Privacy (PGP) and GNU Privacy Guard
(GPG). Now that the Diffie-Hellman and RSA patents have expired,
that’s no longer such a big deal, and these programs now offer both
RSA and ElGamal among their encryption options. The ElGamal digital
signature scheme, which is related to ElGamal encryption and was de-
veloped at the same time, has been very influential and has led to several
popular variations. See Section 8.4 for more on these.

8.3 elliptic curve cryptography

Around 1985, two mathematicians, Neal Koblitz and Victor Miller, in-
dependently realized that many of the public-key systems that we have
seen could be adapted for use with certain mathematical objects known
as elliptic curves. The first thing you need to know about elliptic curves
is that despite having a related name and despite ellipses being curves,
elliptic curves are not ellipses. Ellipses look like squashed circles, have
two lines of symmetry, and are all one piece, as you can see in Figure 8.9.
On the other hand, elliptic curves have only one line of symmetry,
have two open ends, and have either one or two pieces, as shown in
Figure 8.10.

Elliptic curves are given by equations of the form

y2 = x3 + ax2 + bx+ c,

which first came up in the seventeenth century when mathematicians
started studying the arc length of an ellipse. There are a lot of things
mathematicians find interesting about elliptic curves, but the thing that
will make them useful for us is that they have an “addition law”—you
can “add” two points on the curve and get a third point. The way this
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Figure 8.9. An ellipse (not an elliptic curve!).
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Figure 8.10. Two elliptic curves: y2 = x3 + x and y2 = x3 − x.

works actually has very little to do with adding numbers, but it has the
properties that we expect addition to have.

It’s easiest to start with a graphical example: suppose we have the
elliptic curve

y2 = x3 + 17.

Since
32 = (−2)3 + 17

and
52 = 23 + 17,

the two points P = (−2, 3) and Q = (2, 5) are on the curve (see
Figure 8.11). We need a rule to tell us how to get the point P + Q.
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Figure 8.11. y2 = x3 + 17 with points P = (−2, 3) and Q = (2, 5).

We start by drawing a line through P and Q. This line always∗ inter-
sects the curve in a third point, which we call R (see Figure 8.12). Now
here’s where the line of symmetry comes in: you can get a new point
from R by reflecting it across the x-axis. The reflection of R, as shown in
Figure 8.13, is the point we call P+ Q.

Now for the equations: in our example, P = (−2, 3) and Q = (2, 5),
and you can use high school geometry to calculate the equation of the
line through them in point-slope form:

y− 3 = 5− 3

2− (−2) (x− (−2)) ,
or

y = 1
2x+ 4.

Then we can find where this intersects y2 = x3 + 17:

y2 = x3 + 17 and y = 1
2x+ 4,

∗Okay, almost always. Maybe you already see some exceptions. At any rate, we will
get to them in a minute.
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Figure 8.12. y2 = x3 + 17 with points P, Q, and R.
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Figure 8.13. y2 = x3 + 17 with points P, Q, R, and P+ Q.
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so ( 1
2x+ 4

)2 = x3 + 17,

or

x3 − 1
4x

2 − 4x+ 1 = 0

which has solutions

x = 2, x = −2, and x = 1
4 .

We already know about the points with x-coordinate 2 and −2, so R

must be the point with x-coordinate 1
4 . Then

y = 1
2x+ 4 = 1

2 × 1
4 + 4 = 33

8 ,

so R = ( 1
4 ,

33
8

)
. Reflecting across the x-axis is the same as multiplying

the y-coordinate by −1, so the final result is P+ Q = ( 14 ,− 33
8

)
.

Why do we bother with the last reflection? For that matter, why is
this procedure interesting at all? The reasons mathematicians are inter-
ested in this “addition” is because it behaves in many of the same ways
as addition of numbers. For example, if P and Q are any two points on
an elliptic curve, then it doesn’t matter which order you draw a line
through the points, so

P+ Q = Q+ P.

In other words, addition on elliptic curves is commutative, like addition
and multiplication of numbers, but unlike the permutation products we
saw in Section 3.4. It is somewhat more difficult, but also possible, to
show that for any three points P, Q, and S,

(P+ Q)+ S = P+ (Q+ S),

so this addition is associative.
Now it’s time to deal with the exceptions. The first case is easiest

to deal with: what if you want to add a point, say the point Q from
earlier, to itself? Here we need just a little bit of calculus. Remember
that when we have two points in calculus and we let the two points
approach each other until they coincide, then the line through the two
points becomes a tangent line. So instead of drawing a line through
two points, we draw the tangent line through Q, as in Figure 8.14, and
then proceed as before. There will be one other point of intersection
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Figure 8.14. y2 = x3 + 17 with the tangent line through Q.

on the curve, and its reflection becomes Q + Q. The point Q + Q is
also called 2Q, just like in high school algebra, and this is shown in
Figure 8.15. The same logic holds if we draw a line through two distinct
points and discover that instead of meeting the curve in a third point,
the line is tangent to one of the two.

Aside from a little bit of calculus to find the slope of the tangent line,
the equations work the same way in this case. We have Q = (2, 5), and
the slope of the tangent line can be found by implicit differentiation:

y2 = x3 + 17,

so
2yy′ = 3x2

or

y′ = 3x2

2y
.

Thus the tangent line through (2, 5) is

y− 5 = 3× 52

2× 2
(x− 2),
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Figure 8.15. y2 = x3 + 17 with points Q and 2Q.

or

y = 6
5x+ 13

5 .

As before, we can find where this intersects y2 = x3 + 17:

y2 = x3 + 17 and y = 1
2x+ 4

has solutions

x = 2, x = 2, and x = − 64
25 .

So the intersection point has x-coordinate − 64
25 and y-coordinate

6
5x+ 13

5 = − 59
125

and the final result is 2Q = (− 64
25 ,

59
125

)
.

The next exception might be a little more difficult to get your mind
around. If you try to add two points P and Q that lie on a vertical line,
then there is no third point of intersection. However, if you again imag-
ine a point P ′ moving toward P and draw the line through P ′ and Q,
you will see that the third point of intersection, R ′, has a y-coordinate
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Figure 8.16. y2 = x3 + 17 with points P and Q lying on a vertical line.

that gets larger and larger or more and more negative, depending. This
is shown in Figure 8.16. When P ′ coincides with P, we say that the point
of intersection is at infinity and we write P + Q = ∞. The point at
infinity is considered to be its own reflection, so we don’t have to worry
about that part.

Furthermore, any time we have a vertical line, we consider∞ to be
one of the points of intersection of the line with the curve. By symmetry,
the other two points must be reflections of each other across the x-axis.
So we can also consider Figure 8.16 as showing us that P + ∞ is the
reflection of Q across the x-axis, which is P itself. This illustrates two
more ways in which elliptic curve addition is like adding numbers. First,
it has an identity, a point that acts like zero for addition, in that adding
it to another point doesn’t change the original point. In other words,
P + ∞ = P for any P that you choose. Secondly, every point has an
additive inverse that cancels it out, because if Q is the reflection of P,
then P + Q is the identity. To emphasize the similarity with negatives
of numbers, we use −P to denote the reflection of P. Then we can write
P+ (−P) = ∞, or P− P = ∞.
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Now that you have seen the addition law for elliptic curves, you
might have started to get an idea about how they could be useful in
cryptography. But in order to be really useful, we need to introduce one
more thing, which is the “wraparound” idea from Chapter 1. To do this,
we will pick a prime number p and treat two points as the same if their
coordinates are the same modulo p.

For example, take the curve

y2 = x3 + 17

again and the prime p = 7. We saw that the point P = (−2, 3) is on the
curve, but modulo 7 this is the same as the point (5, 3). It’s not true that

52 = 33 + 17,

but it is true that

52 ≡ 33 + 17 modulo 7,

so we say that (5, 3) is on the curve modulo 7. Likewise, the point Q =
(2, 3) is on the curve modulo 7. What about P+Q = ( 14 ,− 33

8

)
? Well, the

equivalent of 14 modulo 7 is 4, which is 2, and the equivalent of − 33
8 is

−33× 8 ≡ 2× 1 ≡ 2× 1 ≡ 2 modulo 7,

so P+ Q ≡ (2, 2) modulo 7, and you can check that

22 ≡ 23 + 17 modulo 7.

This confirms that P + Q is on the elliptic curve modulo 7. If we en-
counter a point where we need to find the inverse of something and we
can’t, then we consider that point to be ∞. The geometric picture of
elliptic curves with which we started no longer makes very much sense
when we are working modulo p, but all the formulas that are necessary
to do addition still work and all of the properties that we have discussed
still hold. So we can talk about addition on an elliptic curve modulo p

without any problems.
Although we have been calling our method of combining points on

elliptic curves addition, there is one important way in which it is less like
addition of numbers and more like multiplication. That’s because there
is a discrete logarithm problem for elliptic curve addition. Remember
that the discrete logarithm problem for numbers is where Eve is given
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numbers C and P and a prime number p and has to find a whole number
e such that

C ≡ P e modulo p.

For the rest of this section I am going to call that the modular exponenti-
ation discrete logarithm problem to distinguish it from what I am about
to introduce.

Remember that 2Pmeans P+P using the addition law for the elliptic
curve. In general, eP means P added to itself e times using the addition
law, and 0P means ∞, because it’s the identity for the addition law.
Then the elliptic curve discrete logarithm problem is where Eve is
given the equation of an elliptic curve and points C and P and a prime
number p, and she has to find a whole number e such that

C ≡ eP modulo p.

Like the modular exponentiation discrete logarithm problem, we think
the elliptic curve discrete logarithm problem is hard, but we don’t know
for sure. In fact, the elliptic curve version seems to be even harder, since
some of the methods we know to solve the modular exponentiation
discrete logarithm problem don’t seem to work on elliptic curves.

Now we pretty much have all the ingredients for elliptic curve
cryptography. As Neal Koblitz tells the story, in 1984 he was involved
in research on elliptic curves as professor at the University of Washing-
ton, when he got a letter from another mathematician about a method
of factoring large integers using elliptic curves. Since Koblitz was well
aware that factoring integers was important for the security of RSA, this
got him thinking about elliptic curves and factoring. Before he had any
results, however, Koblitz left for a previously scheduled trip to the Soviet
Union, where he spent several months. While he was there he hit on the
idea of using the elliptic curve discrete logarithm to construct a crypto-
graphic system, but of course no one in the Soviet Union could talk to an
American about cryptography. Koblitz wrote a letter to another mathe-
matician in the United States describing his idea and a month later got
a response. Not only was Koblitz’ idea a good one, but it was so good
that Victor Miller, who was working at IBM, had independently had the
same idea. In the end, both Koblitz and Miller published papers written
in 1985 on the topic.
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Miller’s paper explained how Alice and Bob can do elliptic curve
Diffie-Hellman key agreement. They need to pick some public infor-
mation, namely, a specific elliptic curve and a very large prime number
p—but not as large as in the modular exponentiation Diffie-Hellman
system, since we think the elliptic curve version is harder to break.
Experts think that a security level equivalent to the 600-digit prime I
mentioned for modular exponentiation Diffie-Hellman in Section 7.2
would be given by a prime “only” about 70 digits long for the elliptic
curve system.

Then Alice and Bob need to find a point G. Unlike in the case of
numbers modulo p, it may not be possible to find a G that generates
all of the points on an elliptic curve, but it should generate a large
number of them. As with the generators modulo p that are needed for
modular exponentiation Diffie-Hellman (see Section 7.2), these items
could be looked up in a table if Alice and Bob don’t want to bother
computing them.

For the secret information, Alice picks a number a and Bob picks a
number b. Then Alice computes the point on the elliptic curve A ≡
aG modulo p and sends it to Bob, and Bob computes B ≡ bG modulo
p and sends it to Alice. Finally, Alice computes aB modulo p, which
is the same as abG modulo p, and Bob computes bA modulo p, which is
the same as baG ≡ abG modulo p, so once again Alice and Bob have a
shared piece of secret information that they can use as a secret key. A
diagram of the system looks like Figure 8.17.

In order to get the shared secret, Eve would have to solve the el-
liptic curve Diffie-Hellman problem, which is figuring out abG from
aG and bG. As in the case of numbers modulo p, we think that this is
probably as hard as the elliptic curve discrete logarithm problem, which
we think is hard, but we aren’t sure about any of it. These problems
haven’t been considered for as long as the other hard problems we have
discussed, but it’s still been more than 25 years, and Eve hasn’t had a
lot of luck. The current record for finding a discrete logarithm on an
elliptic curve modulo p is for a curve modulo the 34-digit, or 112-bit,
prime

p = 2128 − 3

11× 6949
.
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Picks secret a
↓

A ≡ aG modulo p

Picks secret b
↓

B ≡ bG modulo p

↓
aB modulo p

=
baG modulo p

↓
bA modulo p

=
abG modulo p

A →
← B

BobAlice

Figure 8.17. Elliptic curve Diffie-Hellman key agreement.

The computation ran (with interruptions) for about 6 months on a
cluster of more than 200 PlayStation 3 game consoles.

The Diffie-Hellman system isn’t the only public-key cryptographic
system that has an analog over elliptic curves. RSA doesn’t, because
while there are prime numbers and prime polynomials, there doesn’t
seem to be any good way of defining prime points on an elliptic curve.
Therefore, the factoring problem doesn’t seem to have any good equiv-
alent. The three-pass protocol and ElGamal encryption, on the other
hand, are based on discrete logarithms and therefore have elliptic curve
analogs, as Koblitz explained in his paper. Elliptic curve ElGamal en-
cryption is a straightforward adaptation of the modular exponentiation
version and is shown in Figure 8.18.

The elliptic curve three-pass protocol, on the other hand, has a
slight catch to it. In addition to the things we have discussed, it is now
necessary for Alice and Bob to know the number of points on the elliptic
curve modulo p. This is because they need the following equivalent of
the Euler-Fermat theorem.
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Picks an elliptic curve, p, and G
Picks secret b

Uses b to make private decryption key
B ≡ bG modulo p

Posts public encryption key
(curve, p, G, B)

Looks up Bob’s encryption key
(curve, p, G, B)

Picks random secret r

r

↓ (curve, p, G)
R ≡ rG modulo p

Plaintext P
(represented as a point on the elliptic curve)

↓ (curve, p, B, r)
C ≡ P + rB modulo p

(R, C)
↓ (curve, p, b)

P ≡ C – bR modulo p

(R, C) →

BobAlice

Figure 8.18. The elliptic curve ElGamal encryption system.

Theorem (The Elliptic Curve Euler-Fermat Theorem) For any elliptic

curve and any prime p, let f be the number of points on the curve

(including∞) which are distinct modulo p. Then for any point P on

the elliptic curve,

f P ≡ ∞ modulo p.
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Picks secret a

Plaintext P
(represented as a point

on the elliptic curve)
↓

aP modulo p

Picks secret b

↓
a–(b(aP)) ≡ bP modulo p

↓
b(aP) modulo p

↓
b–(bP) ≡ P modulo p

→

←

→

BobAlice

Figure 8.19. The elliptic curve three-pass protocol.

Once again, if Alice and Bob don’t feel like calculating f, they can
find a curve and a p for which they can look it up, and if they do want
to compute f, there are fairly fast techniques for it.

The elliptic curve Euler-Fermat theorem is useful to us because since

f P ≡ ∞ ≡ 0P modulo p,

computations with a in an expression aP on an elliptic curve modulo
p actually work modulo f, in the same way that computations with a

in the expression ka modulo n actually work modulo φ(n). So a and
b in Figure 8.19 need to have inverses modulo f, and a and b in the
figure need to be taken modulo f. Given that, everything proceeds as
you would expect.

Elliptic curve cryptographic systems took a while to catch on, but
they have been attracting more attention in recent years. I’ll say more
about why when we look forward at the end of this chapter.
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8.4 digital signatures

In Section 7.2, I quoted Whitfield Diffie as saying that his and Martin
Hellman’s invention of public-key cryptography was the result of “two
problems and a misunderstanding.” We haven’t talked about the second
problem yet, which is the problem of authentication: how can the recip-
ient of a digital message be sure of who the sender was? Symmetric-key
cryptography solves this problem, but only in a limited way. If Alice
and Bob have a shared secret key that no one else knows and Bob gets a
message encrypted using that key, then he knows only Alice could have
sent it. However, there are situations in which this isn’t good enough.
If Alice and Bob have not been able to exchange a secret key, then they
can’t use it to prove who they are any more than they can use it to keep a
secret. Furthermore, suppose Alice and Bob do have a secret key, which
Bob can use to verify that Alice sent a particular message. Now what if
Bob wants to prove to a third party that Alice sent the message? At the
very least he would have to reveal a secret encryption key, which is of-
ten undesirable. Then Bob would have to prove that Alice really had the
key and hadn’t given it to anyone else, which might be difficult without
Alice’s cooperation. And even if Bob did achieve all that, he still can’t
prove that he didn’t write the message himself, since he knew the key
the same as Alice.

What we need is a digital signature, which acts like a handwritten
signature on a document: it should be difficult to forge, and it should
be difficult to remove from one document and attach it to some other
document. It’s not good enough to scan your handwritten signature and
attach it to the bottom of an email or a file, because it is usually easy for
someone to copy that part of the file and attach it to another part. Or,
someone could simply get any piece of paper with your signature and
scan it and attach it themselves.

In Diffie and Hellman’s first paper, before they knew how to make
an asymmetric-key encryption system, they already understood how
such a system could be used to provide “a time and message depen-
dent digital signature which cannot be forged even when past signatures
have been seen.” We need a couple of assumptions: first, that it is pos-
sible to treat a plaintext message as if it were a ciphertext and, second,
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that even if encryption and decryption are done out of order, you still
get the same message back. These aren’t always true, but sometimes
they are.

If Alice wants to send Bob a signed message, she takes the message
and applies her decryption key to it, as if it were a ciphertext. Since
Alice’s decryption key is private, she is the only one who can do this.
When Bob receives the message, he can apply Alice’s encryption key,
which cancels out the decryption. Alice’s encryption key is public, so
Bob doesn’t have to share a secret with Alice in order to verify the sig-
nature. If he gets back a recognizable message, then he knows it must
have come from Alice. In some cases it might be a good idea for Alice
to send the unsigned message as well as the signed message so Bob can
compare them. Remember that we are not trying to keep the message
secret, just authenticate it. In addition, Bob can demonstrate to a third
party, such as Carol, that Alice signed the message. Since anyone can
get Alice’s public encryption key, Carol can assure herself that Bob isn’t
giving her a fake key. And since Bob doesn’t have Alice’s private decryp-
tion key, Carol knows Bob couldn’t have signed the message himself and
claimed Alice did it.

The RSA system was the first one that could actually be used for
a digital signature in this way, so let’s use it for our example. Alice is
going to send Bob a signed message. Her private primes are p = 59 and
q = 67, making her public modulus n = 3953. Her public encryption
key in this case might be more descriptively called a verification key,
and we will represent it by v. Alice would like this key to be small for
speed reasons, so she chooses v = 5. She calculates φ(n) = (p − 1) ×
(q − 1) = 3828, which means her private decryption key, or signing
key, is 5 modulo 3828 ≡ 2297. We will call this σ . (That’s the Greek
letter sigma, for “signing”.) As usual, she posts n and v in a public place
and keeps the rest secret. Then to sign the messageM, she sends Bob the
signature S ≡ M σ modulo n:

message: ev er yw he re as ig nx

numbers: 5, 22 5, 18 25, 23 8, 5 18, 5 1, 19 9, 7 14, 24

together: 522 518 2523 805 1805 119 907 1424

to the 2297th power: 2037 2969 369 3418 3746 1594 1551 1999
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Picks secret p and q
Uses p and q to make public verification key (n, v)

Uses p and q to make private signing key σ

Posts verification key (n, v)

M

↓ (n, σ)
S ≡ Mσ modulo n

Looks up Alice’s verification key (n, v)

S

↓ (n, v)
M ≡ Sv modulo n

S →

Alice Bob

Figure 8.20. The RSA digital signature system.

Bob can recover the message and check the signature by calculating
M ≡ Sv modulo n:

signature: 2037 2969 369 3418 3746 1594 1551 1999

to the 5th power: 522 518 2523 805 1805 119 907 1424

split apart: 5, 22 5, 18 25, 23 8, 5 18, 5 1, 19 9, 7 14, 24

message: ev er yw he re as ig nx

Since the message makes sense, Bob concludes that it is a genuine mes-
sage from Alice. The entire RSA digital signature scheme looks like
Figure 8.20.

There are some other desirable things that can be added to this
scheme. Since anyone can verify the signature and recover the mes-
sage, there is no secrecy provided by a digital signature. However, if
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Alice wants her message to Bob to be signed and encrypted, that’s no
problem. Alice has a private p, q, and σ and a public n and v. Bob has a
private p, q, and d and a public n and e. Note that Alice’s p, q, and n will
be different than Bob’s. After Alice applies her private signing key σ , she
can encrypt the whole thing with Bob’s public encryption key e. When
Bob gets the message, he first decrypts it with his private decryption key
d and then verifies the signature with Alice’s public verification key v.

Another common way that digital signatures are combined with
public-key encryption is in a certificate. One issue we have not really
discussed is the question of how Bob knows that Alice’s public key,
either for encryption or verification, really belongs to her. He needs
to make sure it wasn’t posted somewhere by Eve in an attempt to fool
people into sending messages that Eve can read. Before Alice posts her
public key, she can have it signed by Trent, a trusted authority. Trent
gives Alice a certificate, which is essentially a statement of what Alice’s
public key is. The certificate is signed with Trent’s private signature key.
If Bob has Trent’s public verification key, he can verify the signature and
get some assurance that Alice’s public key is correct. If Bob doesn’t have
Trent’s key already, he can get a certificate for Trent signed by someone
else, and so on. This is called a certificate chain. Web browsers use
certificates like these to verify that secure Web sites really belong to the
organizations to which they claim to belong. The certificate chain stops
when it reaches one of a set of public keys that are built into the browser
and (hopefully) were confirmed when the browser software was written.

Incidentally, certificates based on RSA digital signatures are by far
the most common on the web. This is probably because Netscape, the
first Web browser to use certificates, had only one built-in certificate,
which was signed by RSA Data Security, Inc. The certificate services
division of RSA Data Security was later spun off into a company called
VeriSign, which is now owned by Symantec. Symantec also owns sev-
eral other companies that issue Web certificates, and it was still the
leading source for certificates on the Internet, at least as of 2013. Popu-
lar browsers such as Internet Explorer, Firefox, Chrome, and Safari also
support certificates based on another system, the Digital Signature Al-
gorithm. I’ll say a little bit more about the Digital Signature Algorithm
shortly.
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We have seen how a digital signature protects Alice and Bob from
Frank the forger’s obvious attack, which is to make up a message and try
to get Bob to think it came from Alice. There are a couple of attacks that
are more subtle, and defending against them requires a couple of other
additions to the scheme. The first attack is called a replay attack. Frank
listens in while Alice sends Bob a signed message and records it. Then
later he replays the message, sending it to Bob as if it had come from
Alice. Bob verifies the signature and concludes that it came from Alice,
since she did originally sign it. If the message is a simple one, such as
meet me at eight o’clock or send me file X, then Bob may not see any-
thing wrong with getting the same message twice at different times, and
it could potentially cause a lot of trouble. Or, Frank might have man-
aged to intercept the message the first time so Bob only gets it once, but
at the wrong time. The standard solution for this is simply to include a
timestamp as part of the message, so that a message can’t be repeated
or delayed. This timestamp needs to be added to the message before the
signature so that Frank can’t change it without invalidating the signa-
ture. Then Alice and Bob need to make sure they have synchronized
clocks, which leads to another whole set of issues.

Another type of attack is called an existential forgery. We saw ear-
lier that the fact that Eve can encrypt any plaintext leads to a forward
search attack. An existential forgery attack is made possible by the cor-
responding fact that Frank can verify any signature. In this attack Frank
takes a random string of numbers or bits and applies Alice’s verifica-
tion key to it as if it were a signature. He then sends Bob the “message”
that was produced by the verification key and the “signature” that he
started with. The message will be a bunch of random numbers or bits,
not anything like English words (or any other language). But the sig-
nature will correctly verify as Alice’s. In some circumstances, such as
if Bob is expecting a certificate containing nothing but a signed pub-
lic key, this could cause Bob a great deal of trouble and perhaps even
lead to a security breach. The defense against a forward search attack
is to add randomness to the encryption process. Conversely, the defense
against an existential forgery is to add structure, thus reducing the ran-
domness. If, for instance, Bob knows that the certificate should contain
not only the public key but Alice’s name, a timestamp, or both, then it’s
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very unlikely that Frank will be able to try enough random signatures
to produce a message that Bob will believe.

The RSA digital signature scheme is an example of a reversible dig-
ital signature, sometimes also called a digital signature with message
recovery, because the verification process reverses the signature pro-
cesses and returns the original message. There are also nonreversible
digital signature schemes, which produce a signature that cannot be
used to recover the original message. In this case, Alice always needs to
send both the message and the signature to Bob. Sometimes a scheme
like this is called a digital signature with appendix, because the
signature is often sent as an appendix to the message.

Not being able to reverse the signature sounds inconvenient, but
it does have some advantages. One is that the signature can be much
shorter than the message, which makes the calculations faster. Also,
Alice can give Bob the signature of a message at one point in time to
prove that she knows a piece of information and only later reveal the
message containing the information.

An example of a nonreversible digital signature is the ElGamal sig-
nature scheme, which is closely related to ElGamal encryption and was
developed at the same time. This system is illustrated in Figure 8.21.
The ElGamal signature scheme has been very influential and has led to
several popular variations, including the Digital Signature Algorithm
(DSA). The DSAwas the first digital signature system endorsed by NIST,
in 1994, and is still a federal standard. It was somewhat controversial
when first proposed but now seems to be generally accepted. There is
also an elliptic curve ElGamal digital signature scheme and the El-
liptic Curve Digital Signature Algorithm (ECDSA). Like the DSA, the
ECDSA is a federal standard, as of 2000.

One company’s (mis)use of the ECDSA made a fairly big splash, at
least among people interested in cryptography, at the end of 2010. Sony
used ECDSA in its PlayStation 3 video game console, which was re-
leased in 2006. The digital signature was used to identify code that had
been approved by Sony to run on the console and prevent unauthorized
code from being run. Unfortunately, it seems that Sony had neglected
to observe an important fact about the ECDSA. Like ElGamal encryp-
tion and ElGamal digital signatures, the DSA and ECDSA use a random
nonce. And as we noted in Section 8.2, if a nonce is reused, the system
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Picks p and g
Picks secret a

Uses a to make public A ≡ ga modulo p

Posts public verification key (p, g, A)

Picks random secret r

r

↓ (p, g)
R ≡ gr modulo p

message M
↓ (p, a, r, R)

S ≡ r–(M – aR) modulo p – 1

Looks up Alice’s verification key (p, g, A)
(R, S, M)

↓ (p, g, A)
Is ARRS ≡ gM modulo p?

If it is, the signature is valid.

(R, S, M) →

Alice Bob

Figure 8.21. The ElGamal digital signature scheme.

is insecure. In late 2010 a group of hackers revealed that Sony was using
the same nonce for every signature. This made it possible for them to
recover Sony’s private signing key and create their own software for the
PlayStation 3. Soon another hacker had also recovered the key and pub-
lished it on his Web site. Sony filed a lawsuit against all these hackers,
which was settled out of court in April 2011.

8.5 looking forward

The three-pass protocol, as I said, is currently much too slow to use ex-
cept in certain very specialized situations, which probably rarely occur
in practice. If someone were to come up with a symmetric-key cipher
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that was commutative and resistant to known-plaintext attacks but
competitive in speed with modern block ciphers, it would suddenly
make the three-pass protocol very attractive. Currently that doesn’t
seem particularly likely.

ElGamal encryption, in both the original and elliptic curve versions,
turns out to be subject to an adaptive chosen-ciphertext attack, where
Eve is trying to read a ciphertext that Alice has sent Bob. If Eve can
trick Bob into deciphering a related ciphertext (this is the adaptive part)
and revealing what it decrypts to, then Eve can recover the original
message. A number of variations on ElGamal encryption have been
proposed to remedy this. One of the simpler ones, the Diffie-Hellman
integrated encryption scheme (DHIES), uses the same blind and hint
as ElGamal but combines the blind and the message using symmetric
encryption rather than modular multiplication. Its elliptic curve ver-
sion, the elliptic curve integrated encryption scheme (ECIES), has
attracted attention due to the fact that shorter elliptic curve keys seem to
provide the same level of security as longer RSA and modular exponen-
tiation DLP-based keys, making elliptic curve systems potentially faster
and more convenient for the same level of security. ECIES has been en-
dorsed by a committee of the Japanese government and a number of
industry committees, although not by the US Government.

I mentioned that an advantage of using elliptic curves is the shorter
key sizes. This is convenient in many situations, especially where there
is very little memory, such as smart cards or radio frequency identi-
fication tags. It would be even more convenient if the keys could be
broken into smaller pieces that didn’t have to be operated on all at
once. This can be done with a more general type of curve, known as
a hyperelliptic curve. Hyperelliptic curves are given by equations of
the form

y2 = xn + an−1xn−1 + an−2xn−2 + · · · + a2x
2 + a1x+ a0,

where n is larger than 4. Compared to elliptic curves, these curves
have a rather more complicated addition law, which operates on sets of
points rather than one point at a time. The size of the whole set of points
making up a key is similar to the size of the key of an elliptic curve, but
some of the calculations needed for hyperelliptic curve cryptography
can be done one point at a time.
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Another advantage of elliptic curves is that they sometimes have
extra useful structure beyond the addition law. For instance, some el-
liptic curves have a “pairing” function, which has the property (among
others) that for some point G on the elliptic curve and any two integers
a and b,

f (aG, bG) = f (G,G)ab.

This can be used in a tripartite Diffie-Hellman key agreement to let
three people agree on a piece of secret information: if Alice chooses a
secret a and a public A = aG, Bob chooses a secret b and a public
B = bG, and Carol chooses a secret c and a public C = cG, then

f (B,C)a = f (A,C)b = f (A,B)c = f (G,G)abc,

and all three of them can calculate the secret. Another possible use of
pairing functions is in identity-based encryption. The idea here is that
when Alice wants to send a message to Bob, instead of looking up his
public key she can just generate it herself from his e-mail address or
some other piece of public information. Not only is this convenient,
but Alice doesn’t have to worry so much about Eve tampering with
whatever source Alice got the key from. Then Alice carries out a set of
computations similar to ElGamal encryption, but involving the pairing
of Bob’s public key with the public key of Trent, the trusted authority.
Bob deciphers the message using the pairing and a secret key unique to
him but generated by Trent using Trent’s secret key. For the details, see
the references in the endnotes.

In 2005, the NSA announced the “Suite B” set of approved cryp-
tographic algorithms for communicating classified and other sensitive
data both within and to the US Government. These algorithms orig-
inally included AES for symmetric-key cryptography, elliptic curve
Diffie-Hellman and one other elliptic curve algorithm for key agree-
ment, the Elliptic Curve Digital Signature Algorithm, and an algorithm
for helping create short, nonreversible digital signatures. AES and the
short-signature algorithm are already pretty much commercial as well
as government standards, and the NSA was clearly hoping that the el-
liptic curve algorithms would follow. The NSA particularly mentioned
the speed and security advantages of elliptic curve cryptography that
come from having a smaller key size.
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Despite these advantages and the push from the NSA, elliptic curve
cryptography has been slow to catch on commercially. One reason is
that cryptographers are inherently conservative and tend to stick with
systems as long as they do not appear to be broken—the longer people
have been unsuccessfully trying to break a system, they feel, the less
likely it is that there will be a nasty surprise tomorrow.

Two recent developments have cast more doubt on the adoption of
elliptic curve algorithms. The first is related to a system for generating
random numbers that could be used for generating secret keys, secret
information for public key systems, or random choices for probabilistic
encryption. The system, known as theDual Elliptic Curve Determinis-
tic Random Bit Generator (Dual EC DRBG), was first published in 2004
and was adopted as a NIST recommended standard in 2006, along with
three other random-number-generation systems. As the name suggests,
Dual EC DRBG uses two elliptic curves. For that and other reasons,
the system was much slower than the other three, which seemed odd.
Also, researchers discovered early on that the random numbers had a
small bias, which ought to have disqualified it as a standard unless it
had some other superiority that was not obvious. Finally, the default
setup for the standard included some arbitrary choices that were never
explained. Ever since the DES S-boxes, unexplained choices in a system
have made cryptographers very suspicious that something might have
been done to weaken it.

Then in 2007, two researchers from Microsoft showed how some-
one who knew a certain relationship between two of these choices
could use it to predict the supposedly random numbers produced by
the system after watching the output for just a short time. That kind
of back door would allow anyone who knew the relationship to break
any cryptographic system that had used the system to generate secret
information.

At this point it was already suspected that the NSA had rigged the
standard so that they could break it. The suspicion remained in the back-
ground, however, until the Snowden release in 2013. Documents in that
release suggest that the NSA originally came up with the Dual EC DRBG
and successfully pushed for it to be included in the standard and also
an international standard. Eventually NIST removed the system from
its recommended standards, but not before at least one well-known
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cryptographer advocated staying away from elliptic-curve systems
entirely, saying they “have constants that the NSA influences when
they can.”

In 2015, a second development weakened the argument for adopting
elliptic curve algorithms. In August of that year, the NSA announced
preliminary plans to replace Suite B with a new set of algorithms
that would be resistant to the sort of quantum computer we will talk
about in the next chapter. Most elliptic curve algorithms, unfortunately,
would be vulnerable to this sort of computer if it were made practi-
cal. What algorithms might be under consideration to replace them has
not been revealed, but we will take a look at some of the candidates in
Section 9.2. In the meantime, for those who have not yet adopted elliptic
curve algorithms, the NSA recommended “not making a significant ex-
penditure to do so at this point.” Instead, Diffie-Hellman and RSA were
added to the list of acceptable algorithms for classified and sensitive
data during the transition period. NIST followed suit with a report on
the state of quantum-resistant cryptography, finalized in April 2016. Ac-
cording to the report, new standards for quantum-resistant algorithms
will be developed by a process similar to the AES competition but with
the likelihood of NIST endorsing multiple candidates in various cate-
gories. The submission deadline is planned for late in 2017, followed by
3 to 5 years of public scrutiny before final standards are announced.



9
The Future of Cryptography

9.1 quantum computing

As we have said several times, the security of the public-key ciphers
in current use relies on the apparent difficulty of solving some well-
known mathematical problems, such as the discrete logarithm problem
and factoring. No one has been able to find an easy way to solve these
problems, but no one has been able to prove that there isn’t one. So, it’s
always possible that someone will come along tomorrow and announce
that they’ve discovered a new mathematical technique that will break
all these codes.

Even if a new mathematical technique doesn’t appear, it’s also
possible that a new kind of computer could make these codes insecure.
The most likely candidate is a computer based on quantum physics.
Even though no one has publicly demonstrated a quantum computer
capable of solving problems of nontrivial size, researchers in the last
couple of decades have started figuring out how to write programs for
such computers. This new field is known as quantum computing, and
it might have important repercussions for cryptography.

The most famous thing that makes quantum physics different from
classical physics is probably superposition, the idea that a quantum
particle, like Schrödinger’s hypothetical cat, can be in more than one
state at the same time. In 1935, the physicist Erwin Schrödinger asked
what would happen if a cat was placed in a sealed box where it couldn’t
be seen or heard. A small amount of radioactive material was also placed
in the box, such that in the course of an hour there was a 50% chance
that an atom would decay and a 50% chance that nothing would happen.
If a Geiger counter in the box detected a decay, it would activate an
automatic cat-food dispenser; otherwise nothing would happen. At the
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or

Figure 9.1. Is Schrödinger’s cat hungry or fed?

end of an hour, is the cat hungry or fed? (See Figure 9.1.) According to
quantum physics, until we open the box to find out, the atom has both
decayed and not decayed, so the cat is both hungry and fed. Just like
the cat can be in two different states at the same time, a quantum bit,
or qubit (pronounced “cue-bit”), can be both 0 and 1 at the same time
instead of having to be either one or the other.

A lot of descriptions of quantum computing make this sound like
an instant solution to all our problems. Suppose we want to factor a
number using a quantum computer: say, 4. We start by setting a bunch
of qubits to the binary representation of the number: 100. Now we take
another bunch of qubits and set them to a possible factor. But instead of
trying each possible factor one by one, we’ll set the factor qubits to

⎧⎨
⎩
0
or
1

⎫⎬
⎭
⎧⎨
⎩
0
or
1

⎫⎬
⎭ ,

so each qubit is simultaneously 0 and 1, and together they make the
“qunumber”
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

00
or
01
or
10
or
11

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

which is 0, 1, 2, or 3. We are looking for factors less than 4, so we are
good so far. Then we can divide 4 by the qunumber, and we keep the
quotient if it’s a whole number less than 4 or output 0 if not. We get the
qubit representation ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

00
or
00
or
10
or
00

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Now we have to remember the other part of Schrödinger’s thought
experiment: until we open the box, the cat is both hungry and fed, but
once we open it and look inside, the cat instantaneously “collapses” into
one state or the other. Applying this to our quantum factoring says
that when we examine the output of the quantum computer, we will
sometimes get the answer 00, which is not a nontrivial divisor and isn’t
helpful. And sometimes we will get the answer 10, which is helpful be-
cause 2 is a divisor. But we can do that with a probabilistic algorithm,
so we haven’t gained anything just by using superposition.

However, there’s another aspect of quantum physics we can use.
Consider the setup in Figure 9.2. A single subatomic particle, such as
an electron or photon, is sent in the direction of a beam splitter. In the
case of a photon, for instance, the beam splitter might be a half-silvered
mirror. If we do this repeatedly, half the time the particle passes through
the beam splitter in the same direction and half the time it bounces
it off in the other direction, which is exactly what we observe at the
detectors (Figure 9.3). So far the particle has behaved entirely according
to probabilistic principles.
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Beam splitter

Detectors

Photon source

Figure 9.2. An experiment with one beam splitter.

50%

50%

Figure 9.3. Each detector registers half the time.

1

0

0

Full mirror

1

Figure 9.4. An experiment with two beam splitters.

Now consider the set up in Figure 9.4, which has two beam splitters
and two fully reflective barriers, such as fully silvered mirrors, that the
particle always bounces off of. If each beam splitter passes the particle
through half the time, there are two possible paths to each detector, and
they are all equally likely. So we would still expect the particle to end up
at each detector half the time. But that’s not necessarily what happens.
Instead, depending on the exact details of the setup, we might see the
particle at the same detector all of the time. (See Figure 9.5.)

The explanation is that somehow each particle is both going through
and bouncing off each splitter, causing it to interfere with itself when
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100%

Figure 9.5. One detector never registers and the other one always does!

the paths rejoin. The mirrors can be arranged so that in one case the
interference causes the particle to cancel itself out and in the other
case the particle reinforces itself, so that one detector never registers
the particle and the other one always does. We need to take advantage
of interference as well as superposition in order to fully take advantage
of quantum computing.

I’m not going to get into the details, but suffice it to say that in 1985,
the physicist David Deutsch described the first quantum algorithm
that could solve a computational problem using a quantum computer
faster than it could be solved using a conventional computer. The partic-
ular problem wasn’t very interesting, but the techniques were extremely
important. They led directly to the first “useful” quantum algorithm in
1994, when Peter Shor discovered an algorithm to (probabilistically)
factor numbers using a quantum computer faster than any known al-
gorithm for conventional computers. In fact, this algorithm can factor
numbers roughly as fast as any algorithm, quantum or conventional, can
find large prime numbers. So widespread use of this algorithm would
make RSA completely insecure. Shor’s paper also showed how to solve
the discrete logarithm problem quickly, so Diffie-Hellman and all the
other systems based on that and variations on it, including the elliptic
curve discrete logarithm problem, would also be insecure.

Progress toward large quantum computers has been slow, but it
seems to have picked up lately. The limiting factor at the moment is the
number of qubits that we can construct and keep stable. In 2001, a team
of IBM scientists and Stanford graduate students announced that they
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had used a quantum computer with 7 qubits to factor the number 15,
which is the smallest number for which Shor’s algorithm works. In 2012
a group in the United Kingdom found a way to factor 21 using fewer
qubits, and another group in China factored 143 using only 4 qubits and
a different algorithm. In 2014 it was announced that the identical 4-qubit
computation that factored 143 can be used to factor numbers as large as
56,153, but only if they have a special form.

If quantum computers could make all common public-key cryptog-
raphy insecure, what about symmetric-key systems? The situation there
isn’t quite as dramatic, but quantum computers would have an effect
there, too. In 1996, Lov Grover, an Indian-American computer scientist
at AT&T Bell Labs, invented a quantum algorithm for (probabilistically)
searching a database much faster than you can do it with a classical
computer. In particular, if you have N things to search through, such
as N keys for a symmetric system, then Grover’s algorithm can do it
in only

√
N steps. The smallest-size AES key, to be very explicit, has

128 bits, so a brute-force attack with a conventional computer needs to
search through 2128 keys. Grover’s algorithm would need to do only the
equivalent of searching through

√
2128 = 264 keys. The use of quantum

computers immediately cuts the effective key size of a symmetric-key
cipher in half, at least as far as brute-force search is concerned. The
NSA is now recommending 256-bit AES keys as part of its transition to
a new set of quantum-resistant algorithms, as mentioned in Section 8.5.

9.2 postquantum cryptography

What would cryptographers do if quantum computers became com-
mon? For symmetric-key systems, raising key sizes seems to be sufficient
at the moment. For public-key systems, research is being done into
what is often called postquantum cryptography, although a more de-
scriptive name might be quantum-resistant cryptography. These are
systems based on problems that are not known to be easily solvable
using a quantum computer. Instead of relying on factoring or discrete
logarithms, they rely on problems such as solving systems of multi-
variable polynomials, finding the shortest distance from a point to an
n-dimensional skewed grid of other points, or finding the closest bit



282 • Chapter 9

1

1
1

–1

–1

–1

–2

–2

–2

2

2
y

z

x

2

Figure 9.6. A three-dimensional lattice.

string to a set of other bit strings. These methods typically have not
been used in the past because they are less efficient. They are getting
better, however, and as we saw in Section 8.5, at least the NSA and
NIST think that it is time to move toward adopting them.

As an example, let’s take a look at lattice-based cryptography. A
lattice is an evenly spaced grid of points in an n-dimensional space
equipped with coordinate axes. A three-dimensional lattice, for exam-
ple, is shown in Figure 9.6. There are two standard lattice problems that
are thought to be hard, even for quantum computers. In each case, the
lattice is specified by n points that generate it, as shown in Figure 9.7.
Generating the lattice means starting at the origin of the coordinate axes
and extending the given points into a regularly spaced grid. The short-
est vector problem is the problem of finding a point in a lattice as close
as possible to the origin of the axes, given the generators of the lattice.
For two dimensions, this is shown in Figure 9.8. In the closest vector
problem, we are given generators for the lattice and another point not
in the lattice. The goal is to find a point in the lattice as close as possible
to the given point. This is shown in two dimensions in Figure 9.9.
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Figure 9.7. Two points (solid circles) and the lattice generated by them (open circles).
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Figure 9.8. The shortest vector problem: Two generators (solid circles), the lattice gen-
erated by them (open circles), and the closest points in the lattice to the origin (solid
boxes).
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Figure 9.9. The closest vector problem: Two generators (solid circles), the lattice gener-
ated by them (open circles), a point not on the lattice (cross), and the closest point in the
lattice to it (solid box).

These lattice problems probably don’t look especially hard, and in
fact the examples shown aren’t. There are two things necessary to make
lattice problems harder. One is to increase the number of dimensions. A
practical cryptographic system would need to use lattices in 500 dimen-
sions or more. Even then finding the right point isn’t very hard if the
angles in the grid are close to 90◦. So the second thing necessary is to
make the angles far from right angles, as in Figure 9.10. In two dimen-
sions you can probably tell by visual inspection that there is a different
set of generators for the same lattice, giving a grid with much more
convenient angles. But if you can imagine a lattice in 500 dimensions
with angles like the ones in the figure, you might start to see the issues
involved in solving cryptographic lattice problems.

Let’s focus on the closest vector problem, since we will use it
in our example cryptographic system. In 1984, László Babai pointed
out that it was easy to approximately solve the problem by exploiting
the connection between lattice generation and the same sorts of equa-
tions we saw dealing with the Hill cipher in Section 1.6. Keeping with
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Figure 9.10. A lattice where the angles in the grid are far from right angles.

two-dimensional examples, suppose a lattice is generated by the points
(k1, k3) and (k2, k4). Then any point in the lattice can be represented by
taking two integers s and t and finding the point

s(k1, k3)+ t(k2, k4) = (sk1 + tk2, sk3 + tk4).

On the other hand, if you have a point (x, y) in the lattice and want to
know how it was generated, you can find out by setting

(x, y) = (sk1 + tk2, sk3 + tk4)

and solving the equations

x = sk1 + tk2,

y = sk3 + tk4.

This is basically the same system of two equations in two unknowns
that we saw in Section 1.6, and the methods used to solve the system
there work here also. You get back the integers s and t used to represent
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Figure 9.11. Solving the CVP using Babai’s method: Babai’s method rounds the given
point not in the lattice (cross) to a point on the lattice (solid box). This is the correct
answer in the case of the given point. In fact, the method rounds everything in the gray
parallelogram to the same solid box. The points within the outlined hexagon are the
points actually closest to the solid box. The large overlap shows that Babai’s method is
usually correct for this lattice.

the lattice point. If you have n dimensions, then you get n equations in
n unknowns to solve, and it works the same way.

What happens if you try this with a point not in the lattice? You can
still get s and t, but they will not be integers. If you round s and t each to
the closest integer, you get a likely candidate for the closest lattice point
to the point not on the lattice. For example, in Figure 9.11, the point
designated by a cross can be written as 4.250(k1, k3)+ 1.125(k2, k4). It is
rounded to 4(k1, k3)+ 1(k2, k4), which is designated by the solid box.

Now, if the angles in the lattice grid are close to right angles, then
this rounded point is probably the closest lattice point to the given one.
If the angles in the grid are far from right angles, as shown in Figure 9.12,
then Babai’s method is likely to find a point on the lattice that is close—
but not the closest—to the given point. In the figure, the point designated
by a cross can be written as 2.4(k1, k3) − 1.4(k2, k4). It is rounded to
2(k1, k3)− 1(k2, k4), which is designated by the open box. However, the
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Figure 9.12. Babai’s method on a bad lattice: The solid box is the point in the lattice
closest to the given point (cross), but Babai’s method rounds the given point to the open
box. This is not the correct answer in the case of the given point. In fact, the method
rounds everything in the gray parallelogram to the same open box. The points within
the outlined square are the points actually closest to the open box. The small overlap
shows that Babai’s method is usually not correct for this lattice.

actual closest point to the cross is the point designated by a solid box,
which is 3(k1, k3)− 3(k2, k4). The same ideas hold in n dimensions, and
the more dimensions involved, the harder it is to find the correct point.

How do we make that into a asymmetric-key cryptographic system?
Suppose that Bob knows both a “good” set of generators and a “bad”
set of generators for the same lattice, as in Figure 9.13. The good set
makes a grid with angles close to right angles. The bad set makes a
grid on the same points, but with angles far from right angles. The bad
generators are going to be Bob’s public key, and the good generators are
his private key. For a two-dimensional example, the public key might
be (50, 40) and (58, 46), which have an angle of 0.24◦ between them.
The private key might be (2, 4) and (4,−2), which have an angle of 90◦
between them. Remember that in real life, we would be using many
more dimensions.
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same lattice.
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When Alice wants to send Bob a message, she turns the message
into numbers and uses the numbers and the bad generators to find a
point in the lattice. One difference between this cipher and some of our
previous ones is that this cipher is actually more secure if each “block”
consists of a very small amount of information. So, in our example we
will split each letter into two decimal digits, which we will treat as two
different numbers. Each pair of numbers will give us a lattice point.

plaintext: l a t t i

numbers: 12 1 2 0 2 0 9

split apart: 1, 2 0, 1 2, 0 2, 0 0, 9

lattice points: 166, 132 58, 46 100, 80 100, 80 522, 414

plaintext: c e n o w

numbers: 3 5 14 15 23

split apart: 0, 3 0, 5 1, 4 1, 5 2, 3

lattice points: 174, 138 290, 230 282, 224 340, 270 274, 218

Then Alice adds a small random nonce to each point, similar to the
use of the blind in the ElGamal system from Section 8.2. The result is a
point that is near a lattice point but no longer in the lattice itself. This is
the ciphertext that Alice sends to Bob. For example,

plaintext: l a t t i

numbers: 12 1 2 0 2 0 9

split apart: 1, 2 0, 1 2, 0 2, 0 0, 9

lattice points: 166, 132 58, 46 100, 80 100, 80 522, 414

nonce: 1, 1 1, 1 −1, 1 1, −1 1, 1

ciphertext: 167, 133 59, 47 99, 81 101, 79 523, 415

plaintext: c e n o w

numbers: 3 5 14 15 23

split apart: 0, 3 0, 5 1, 4 1, 5 2, 3

lattice points: 174, 138 290, 230 282, 224 340, 270 274, 218

nonce: 1, 1 1, 1 1, 1 −1, 1 −1, −1
ciphertext: 175, 139 291, 231 283, 225 339, 271 273, 217

To decrypt the point, Bob uses Babai’s method and the good gener-
ators in the private key to find a lattice point, which is almost certain
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to be the one that Alice used. Then he can work backward to find the
original plaintext.

ciphertext: 167, 133 59, 47 99, 81 101, 79 523, 415

Babai’s s and t: 43.3, 20.1 15.3, 7.10 26.1, 11.7 25.9, 12.3 135.3, 63.1

rounded: 43, 20 15, 7 26, 12 26, 12 135, 63

lattice points: 166, 132 58, 46 100, 80 100, 80 522, 414

numbers: 1, 2 0, 1 2, 0 2, 0 0, 9

together: 12 1 20 20 9

plaintext: l a t t i

ciphertext: 175, 139 291, 231 283, 225 339, 271 273, 217

Babai’s s and t: 45.3, 21.1 75.3, 35.1 73.3, 34.1 88.1, 40.7 70.7, 32.9

rounded: 45, 21 75, 35 73, 34 88, 41 71, 33

lattice points: 174, 138 290, 230 282, 224 340, 270 274, 218

numbers: 0, 3 0, 5 1, 4 1, 5 2, 3

together: 3 5 14 15 23

plaintext: c e n o w

Eve can also try to find the correct lattice point, but she has only the
bad generators. So she can try to use Babai’s method, but she will most
likely come up with the wrong lattice point:

ciphertext: 167, 133 59, 47 99, 81 101, 79 523, 415

Eve’s s and t: 1.6, 1.5 .6, .5 7.2, −4.5 −3.2, 4.5 .6, 8.5

rounded: 2, 2 1, 1 7, −5 −3, 5 1, 9

lattice points: 216, 172 108, 86 60, 50 140, 110 572, 454

numbers: 2, 2 1, 1 7, −5 −3, 5 1, 9

together: 22 11 ?? ?? 19

plaintext?: v k ?? ?? s

ciphertext: 175, 139 291, 231 283, 225 339, 271 273, 217

Eve’s s and t: .6, 2.5 .6, 4.5 1.6, 3.5 6.2, .5 1.4, 3.5

rounded: 1, 3 1, 5 2, 4 6, 1 1, 4

lattice points: 224, 178 340, 270 332, 264 358, 286 282, 224

numbers: 1, 3 1, 5 2, 4 6, 1 1, 4

together: 13 15 24 61 14

plaintext?: m o x ?? n
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• Picks a dimension n
• Picks a secret set of generating
 points b1, …, bn

• Uses b1, …, bn to make public set of
 generating points B1, …, Bn for the
 same lattice
• Posts public encryption key B1, …, Bn

  C
  ↓
• Get rounded C using Babai’s method
 and (b1, …, bn)
  ↓
• Solve
 (rounded C) = P1B1 + P2B2 + … + PnBn

 to get P1, …, Pn  

• Looks up Bob’s encryption key B1, …, Bn

• Picks randon small secret point r
• Start with plaintext numbers P1, …, Pn

  ↓
• Calculate ciphertext point
  C = P1B1 + P2B2 + … + PnBn + r

C →

BobAlice

Figure 9.14. The GGH encryption system.

In order to find the correct point in the lattice, Eve has to solve the
closest vector problem. If the generators are bad enough and the number
of dimensions is high enough, we believe that this will be hard, even if
Eve has a quantum computer.

This system is known as the Goldreich-Goldwasser-Halevi, or
GGH, cryptosystem, afterOded Goldreich, Shafrira Goldwasser, and
Shai Halevi, the three Israeli computer scientists who invented it in
1997. The whole system looks like Figure 9.14. Unfortunately, in 1997 it
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was discovered that the system is insecure in practice. Alice’s blind has
to be small compared to the size of the lattice or else the closest point
that Bob finds won’t be the one Alice started with. But it turns out that
Eve can use that information to make the problem much easier to solve
than the standard closest vector problem.

There are other lattice-based cryptographic systems that have not
yet been broken, and many of them use elements similar to GGH. The
most promising lattice-based system is known asNTRU. It was invented
in 1996 by three researchers at Brown University: Jeffrey Hoffstein, Jill
Pipher, and Joseph Silverman. NTRU was originally described using
other sorts of mathematics but was later shown to be equivalent to a
system using lattices. It’s never been definitively revealed what NTRU
stands for, but rumors suggest that it might be Number Theorists aRe
Us or Number Theorists aRe Useful. When asked about it, Jeff Hoffstein
once replied, “It stands for whatever you want.”

Both GGH and NTRU also have digital signature systems associated
with them; see the endnotes for more information.

9.3 quantum cryptography

Another possibility is that the same quantum physics that could allow
us to build quantum computers could also allow us to protect against
quantum-computational attacks. Quantum cryptography is the study
of how to use a combination of quantum physical laws and crypto-
graphic cleverness to create cryptographic systems. The first examples
of this were originally proposed by Stephen Wiesner when he was a
graduate student in physics at Columbia University in the late 1960s.
Wiesner proposed two ideas: The first was a way to send two messages
at the same time such that the recipient could choose to receive either
one, but not both. The second idea was a way to make currency with
a serial number that could not be copied and, therefore, could not be
forged. Like Ralph Merkle, Wiesner encountered almost universal in-
comprehension and disbelief from his professors and colleagues, and
his paper was repeatedly rejected by scientific journals. The paper would
not be published until 1983.
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Figure 9.15. Polarized photons.

One person who did appreciate Wiesner’s paper was Charles Ben-
nett. Bennett knew Wiesner from when they were undergraduates at
Brandeis together and had studied chemistry, physics, and mathemat-
ics before settling on computer science. Thus, he was ideally suited to
understand quantum cryptography. Somewhere along that career path,
Wiesner showed Bennett a copy of his manuscript. As Wiesner had
hoped, Bennett was fascinated. He thought about it on and off for the
next 10 years or so, but he didn’t really know what to do with the idea
until he ran into Gilles Brassard while swimming at a hotel beach dur-
ing a conference in 1979. Bennett knew that Brassard was giving a talk
on cryptography and immediately started to explain Wiesner’s ideas.
Brassard had read an account of Bennett’s work in one of Martin Gard-
ner’s columns but had no way of connecting the name to the man who
was swimming on the beach! Eventually they got proper introductions
made and started working together on quantum cryptography—leading,
among other things, to the BB84 protocol.

The BB84 protocol, which comes from the names of Bennett and
Brassard and the year it was first published, is a key agreement system,
which, like Wiesner’s systems, uses polarized photons to convey infor-
mation. One can think of the polarization of a photon as the direction in
which it vibrates; if the photon is traveling toward you and parallel to
the ground, it could be vibrating left and right as you look at it, up and
down, or somewhere in between. (See Figure 9.15.) In order to detect
the polarization of a photon, we need a polarized filter. Such a filter is
designed to let photons through only if they are vibrating in the same
direction as the photon. So, in Figure 9.16, the filter lets through pho-
tons vibrating in the vertical direction and not those vibrating in the
horizontal direction.
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Figure 9.16. Polarized photons approaching a filter.

Figure 9.17. Polarized photons after passing through a filter.

The interesting part is what happens when a photon is vibrating
diagonally, say at a 45◦ angle. According to quantum physics, we can
think of diagonal vibration as a superposition of a vertically vibrating
state and a horizontally vibrating state. We can think of the filter as
causing the photon to collapse into one state or the other at random.
So, if a bunch of photons are vibrating diagonally, half of them will get
through and half will not, which is not too surprising. But you might
expect the ones that get through to be still tilted, or at “half-strength,” or
something similar, and this is not true. Once a photon passes through a
vertically polarized filter, it looks just like any other vertically polarized
photon. There’s no way to tell whether it was originally vertically polar-
ized or diagonally polarized. Likewise, if the photon doesn’t go through,
there is no way to tell whether it was horizontally polarized or whether
it was diagonally polarized and just unlucky. Figure 9.17 shows the same
photons as Figure 9.16, but after they have attempted to pass through
the filter.
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Figure 9.18. Polarized photons after passing through a diagonal filter.

One last note and then we are ready to go. Just as a diagonally
polarized state is a superposition of vertically and horizontally polar-
ized states, we can equally well think of a vertically or horizontally
polarized photon as being in a superposition of two diagonally polar-
ized states (upper left to lower right and lower left to upper right). Thus,
if a vertically or horizontally polarized photon attempts to pass through
a diagonally polarized filter, as in Figure 9.18, half the time it will get
through and half the time it will be blocked. And if it does get through,
it will be indistinguishable from any other diagonally polarized photon.

Nowwe are ready for the BB84 protocol. Alice and Bob need to have
a communications link over which Alice can send Bob single polarized
photons and an ordinary (not necessarily single-photon-grade) two-way
means of communication. Eve might be able to overhear one or both
links. Alice starts by choosing two sets of random bits. The first set
controls whether Alice is going to use a vertical and horizontal scheme,
which we will denote�, or a diagonal scheme, which we will denote�.
In the� scheme, a vertically polarized photon (�) will stand for the bit 1
and a horizontally polarized photon (↔) will stand for the bit 0. In the�
scheme, a lower-left-to-upper-right polarized photon (↗↙) will stand for
1 and an upper-left-to-lower-right polarized photon (↖↘) will stand
for 0. The second set of random bits controls the bits that get sent using
the chosen schemes. In the following example, I’m not going to list the
first set of bits because only the schemes chosen are important.

Alice’s schemes: � � � � � � � � � �
Alice’s bits: 0 1 0 0 0 0 0 1 0 0

Alice’s photons: ↖↘ ↗↙ ↖↘ ↖↘ ↔ ↔ ↔ ↗↙ ↔ ↖↘
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Now Bob also chooses a random set of bits. He uses this set to select
schemes in which to detect the photons by using a polarized filter. If
Bob’s scheme matches Alice’s for some photon, then he will detect the
photon correctly and convert it back into the correct value of the bit. If
not, then the photon will collapse into a state at random and Bob will
get a random value of the bit. This value may or may not match Alice’s.

Alice’s schemes: � � � � � � � � � �
Alice’s bits: 0 1 0 0 0 0 0 1 0 0

Alice’s photons: ↖↘ ↗↙ ↖↘ ↖↘ ↔ ↔ ↔ ↗↙ ↔ ↖↘

Bob’s schemes: � � � � � � � � � �
Bob’s photons: ↖↘ ↗↙ � ↔ ↔ ↔ ↔ � ↖↘ ↖↘

Bob’s bits: 0 1 1 0 0 0 0 1 0 0

Remember, at this stage neither Alice nor Bob knows which bits have
been correctly received.

Now Alice and Bob open their two-way line of communication. For
each of the bits, Alice tells Bob what scheme she used but not what
bit she sent. Bob tells her if he used the same scheme, and when the
schemes match, they keep the bit. Otherwise they throw it away.

Alice’s schemes: � � � � � � � � � �
Alice’s bits: 0 1 �0 �0 0 0 0 �1 �0 0

Alice’s photons: ↖↘ ↗↙ ↖↘ ↖↘ ↔ ↔ ↔ ↗↙ ↔ ↖↘
Bob’s schemes: � � � � � � � � � �
Bob’s photons: ↖↘ ↗↙ � ↔ ↔ ↔ ↔ � ↖↘ ↖↘

Bob’s bits: 0 1 �1 �0 0 0 0 �1 �0 0

As you can see from the example, occasionally they have to throw
out bits which by random chance did match. There’s no way around
that. Nevertheless, on the average about half the schemes will match, so
Alice and Bob can keep about half the bits. They can then use these bits
as the secret key to a secure, nonquantum, symmetric-key cipher, just
like in any key-agreement system. If by chance they had to throw away
so many bits that they don’t have enough for their chosen symmetric-
key cipher, they can go back to the protocol and gather more bits the
same way.
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What if Eve is listening in on the two communications links? She
can also choose a set of random schemes and try to detect the photons
just the same as Bob can:

Alice’s schemes: � � � � � � � � � �
Alice’s bits: 0 1 �0 �0 0 0 0 �1 �0 0

Alice’s photons: ↖↘ ↗↙ ↖↘ ↖↘ ↔ ↔ ↔ ↗↙ ↔ ↖↘
Bob’s schemes: � � � � � � � � � �
Bob’s photons: ↖↘ ↗↙ � ↔ ↔ ↔ ↔ � ↖↘ ↖↘

Bob’s bits: 0 1 �1 �0 0 0 0 �1 �0 0

Eve’s schemes: � � � � � � � � � �
Eve’s photons: ↔ ↔ � ↖↘ ↗↙ ↔ ↔ ↗↙ ↔ ↖↘

Eve’s bits: 0 0 1 0 1 0 0 1 0 0

She can also listen in on Alice and Bob’s conversation and find out
which of her schemes matched Alice’s and/or Bob’s. Unfortunately for
her, the only bits that do her any good are the ones where she matched
both Alice and Bob’s schemes.

Alice’s schemes: � � � � � � � � � �
Alice’s bits: 0 1 �0 �0 0 0 0 �1 �0 0

Alice’s photons: ↖↘ ↗↙ ↖↘ ↖↘ ↔ ↔ ↔ ↗↙ ↔ ↖↘
Bob’s schemes: � � � � � � � � � �
Bob’s photons: ↖↘ ↗↙ � ↔ ↔ ↔ ↔ � ↖↘ ↖↘

Bob’s bits: 0 1 �1 �0 0 0 0 �1 �0 0

Eve’s schemes: � � � � � � � � � �
Eve’s photons: ↔ ↔ � ↖↘ ↗↙ ↔ ↔ ↗↙ ↔ ↖↘

Eve’s bits: 0 0 �1 �0 1 0 0 �1 �0 0

If Eve matches Alice but Bob doesn’t, then the bit gets thrown out. And
if Bob matches Alice but Eve doesn’t, then Eve has no idea whether her
bit was correct or not. On average, Eve will be guaranteed to correctly
intercept about half the bits that Alice and Bob use in the end. And by
chance, about half the rest will be correct, but Eve doesn’t know which
ones, so there’s not much she can do with that. Eve has managed to
reduce Alice and Bob’s effective key size by half, but as long as Alice
and Bob have taken that into account, they’re in good shape.

In fact, things are even worse for Eve than they appear. I left out the
fact that when Eve intercepts the photon using the wrong detector, she
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will collapse it into a different state, which will affect what Bob receives.
So what will actually happen will be something like this:

Alice’s schemes: � � � � � � � � � �
Alice’s bits: 0 1 �0 �0 0 0 0 �1 �0 0

Alice’s photons: ↖↘ ↗↙ ↖↘ ↖↘ ↔ ↔ ↔ ↗↙ ↔ ↖↘
Eve’s schemes: � � � � � � � � � �
Eve’s photons: ↔ ↔ � ↖↘ ↗↙ ↔ ↔ ↗↙ ↔ ↖↘

Eve’s bits: 0 0 �1 �0 1 0 0 �1 �0 0

Bob’s schemes: � � � � � � � � � �
Bob’s photons: ↖↘ ↖↘ � ↔ � ↔ ↔ � ↖↘ ↖↘

Bob’s bits: 0 0 �1 �0 1 0 0 �1 �0 0

When Eve has guessed wrong and collapsed the photon, then half
the time Bob will receive it incorrectly. If Alice and Bob have reason
to think that Eve might be listening, all they have to do is choose a
random sampling of bits that ought to agree and reveal them over the
public channel. If they do agree, then they throw those bits out and use
the rest for their key. Either Eve is not listening or she has gotten very
lucky. If they don’t agree, then Eve is listening and they need to start
over or find another way to communicate.

For the next 5 years or so after BB84 was published, nothing much
happened in the field of quantum cryptography. Eventually, Bennett
and Brassard decided that they needed to build a working prototype of
the system in order to get people to take their idea seriously. With
the help of three students, Bennett and Brassard performed the first-
ever key agreement by quantum cryptography in late October 1989,
on the tenth anniversary of Bennett and Brassard’s initial meeting.
The quantum transmissions took place over a distance of 32.5 centime-
ters and therefore had little practical value, but they proved it could
be done.

Bennett and Brassard achieved their goal of getting researchers
interested in their idea, and people soon began to build systems on a
practical scale. By 2014, a team from the University of Geneva and Corn-
ing Incorporated was able to implement a quantum key-distribution
protocol over a fiber-optic cable 307 kilometers long, which is long
enough to be practical in almost all the fiber-optic networks used today.
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Secret key bits were generated at 12,700 bits per second, which could po-
tentially be enough even for a one-time pad system. In 2006, on the other
hand, a team from various institutions in Europe and Asia implemented
BB84 using laser transmissions through the open air between two of the
Canary Islands, over a distance of 144 km. The researchers suggest that
this is reasonably comparable to a transmission between the ground and
a low-orbiting satellite; although the distance to the satellite would be
longer, the amount of atmospheric interference ought to be less.

Even before these experiments, a demonstration of the commercial
possibilities of quantum cryptography—although of a nature perhaps
more dramatic than truly useful—took place on April 21, 2004, when the
first bank transfer protected by quantum cryptography was transmit-
ted from the City Hall of Vienna, Austria, to the headquarters of Bank
Austria Creditanstalt elsewhere in the city. The necessary fiber-optic
cables (about 1.5 km long) were specially laid through the Vienna sewer
system. Several companies now have quantum-cryptographic equip-
ment for sale or in development, and various multibuilding computer
networks protected by quantum cryptography have been set up by re-
searchers in the United States, Austria, Switzerland, Japan, and China,
among others. The Japanese network, for example, has 6 links ranging
from 1 kilometer to 90 kilometers long. In 2010, secret key bits gener-
ated at 304,000 bits per second were used to encrypt live video using a
one-time pad on one of the 45-kilometer links. At this point the expen-
sive equipment required is probably not justified by most organizations’
security needs, but in 2013 a nonprofit research and development con-
tractor in Ohio installed what they called the first commercial quantum
key-distribution system in the United States. “I don’t know that every-
one will [adopt QKD],” says a researcher there, “but I do think that
companies and organizations that have very high-value data will.”

Of course, the adoption of quantum cryptography will not mean
the end of cryptanalysis. Most of the cryptanalytic attacks discussed
in this book fall into what is sometimes called pure cryptanalysis. This
loosely defined term refers to techniques that require little or no in-
formation besides the plaintexts and/or ciphertexts under consideration
and perhaps the language the plaintexts are in. For starters, this excludes
probable-word attacks, which generally require Eve to know something
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about the context of the messages in addition to the messages them-
selves. These techniques also assume that Eve doesn’t have any way of
getting information about the inner workings of Alice and Bob’s cryp-
tographic techniques or machines, only the input and output. Finally,
pure cryptanalysis assumes that Alice and any machines she uses have
done their job of encryption exactly like they are supposed to. Crypt-
analytic attacks that use knowledge about the inner workings of the
cryptographic processes, including possible mistakes that Alice might
make or Eve might force, are called implementation attacks.

It’s generally agreed that if Eve doesn’t have any access to the inner
workings of Alice and Bob’s equipment and everything works exactly
as it’s supposed to, BB84 is secure from anything Eve can try to do.
One thing that doesn’t always work like it’s supposed to is building a
transmitter that is certain to produce exactly one photon at a time. Many
systems use a very weak laser. When it’s fired, the laser usually produces
no photons at all, sometimes produces one photon, and occasionally
produces more than one photon. If a pulse has no photons, then Bob
won’t receive anything and he and Alice will agree to throw out that bit
as if Bob had chosen the wrong detection scheme. If a pulse had more
than one photon, then they will all be polarized the same way, and it
doesn’t matter how many or which ones Bob detects.

However, Eve can take advantage of this variation in the number
of photons using the photon number–splitting attack. This attack is
based on the fact that while Eve can’t determine the polarization of a
photon without disturbing it, she can determine the number of photons
in a pulse without changing their polarizations. So if Alice’s laser sends
more than one photon, Eve can very carefully split off one of the photons
and send the rest on to Bob. Since in the real world some photons are
usually lost in transmission anyway, Alice or Bob may very well not
realize what Eve is doing. Eve can then keep her captured photons in
some sort of quantum storage device until she has a chance to listen to
Alice and Bob exchange detection schemes, after which she can use the
correct detection scheme on the correct photons.

Using only the rare multiphoton pulses won’t get Eve very many
bits of the key, but it gets worse. Eve can also simply block some or
all of the single-photon pulses—again, Alice and Bob won’t know that
this was done deliberately, as opposed to being accidental losses. If Eve
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blocks the right number of single-photon pulses and intercepts the right
number of multiphoton pulses, she can obtain much or all of Alice and
Bob’s final key without them realizing it.

There are several ways for Alice and Bob to defend against this
attack, including developing better photon generators and making
modifications to BB84. Another promising defense is the use of decoy
pulses, which Alice deliberately makes have more or fewer photons
than usual. While sending her photons, Alice randomly intersperses the
regular pulses, which will be used to compute the key as usual, with
these decoy pulses. During the two-way, nonquantum, part of Alice and
Bob’s communication, in addition to revealing the polarization schemes,
Alice also reveals which pulses were decoy pulses. If Eve has been using
photon number splitting, then the rate at which the decoy pulses are
“lost” in transmission will be different from the rate of loss of regular
pulses. If the difference is large enough, Alice and Bob can conclude
that Eve is listening in and take appropriate action.

Photon number splitting is essentially a passive attack, which Eve
can carry out with minimal interference to Alice and Bob’s communi-
cations. Several other attacks on quantum cryptography also make use
of peculiarities of the equipment used by Alice and Bob but require Eve
to interfere more actively with Alice and/or Bob’s equipment or lines of
communications. A number of these active attacks have been shown to
be successful against commercially sold systems. In the bright illumi-
nation attack, for example, Eve attacks Bob’s detectors with specially
tailored pulses of bright laser light. Certain detectors can be blinded and
even fooled into thinking they are picking up Alice’s photons this way.

9.4 looking forward

Edgar Allan Poe famously wrote that, “it may be roundly asserted
that, human ingenuity cannot concoct a cipher which human ingenu-
ity cannot resolve.” In theory he has been proven wrong: when executed
properly under the proper conditions, techniques such as the one-time
pad and the BB84 protocol can be proved to be secure against any possi-
ble attack by Eve. In real-life situations, however, Poe was undoubtedly
right. Every time an “unbreakable” system has been put into actual
use, some sort of unexpected mischance eventually has given Eve an
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opportunity to break it. The race between the cryptographers and the
cryptanalysts goes on, as it surely will as long as people try to send se-
cret messages. And as long as people remain interested in things like
power, money, and relationships, I’m pretty sure the secret messages are
going to keep coming.



LIST OF SYMBOLS

Note: Some symbols, like C, P, and k are used so frequently

that I have only listed the first or first few instances.

A Alice’s public information for various protocols. 210, 243, 261, 271
B Bob’s public information for various protocols. 209, 243, 248, 250, 261, 263
C A number representing cipertext. 16

C1,C2, . . . Number representing ciphertext letters in a polygraphic cipher. 20
G A point that generates a large number of points on an elliptic curve. 261,

263
M A number representing a message to be signed. 266
P A number representing plaintext. 16

P, Q, R Points on an elliptic curve. 253
P1, P2, . . . Numbers representing plaintext letters in a polygraphic cipher. 20

R Hint for ElGamal encryption. 248, 250, 263
S A number representing a digital signature for a message. 266

φ(n) The Euler phi function of n. 193
σ Private signing key for digital signatures. 266
a Alice’s secret information for various protocols. 210, 243, 261, 271
b Bob’s secret information for various protocols. 210, 243, 248, 250, 261
d Decryption exponent for various ciphers. 188, 217
e Encryption exponent for various ciphers. 183, 217
f Number of points on an elliptic curve modulo a prime. 264
g A generator modulo a prime number. 209, 234, 248, 250, 271
k A key for a symmetric-key cipher. 5, 12, 16

k1, k2, . . . Numbers representing parts of the key in a polygraphic cipher. 20
m Another key for another symmetric-key cipher. 23
n A composite modulus. 193, 217
p A prime number 186, 209, 217, 234, 248, 250, 263, 271
q Another prime number. 217
r Random nonce for ElGamal encryption. 248, 250, 263
v Public verification key for digital signatures. 266





NOTES

“each equation . . .would halve the sales”: Stephen W. Hawking, A Brief

History of Time: From the Big Bang to Black Holes (Toronto; New York: Bantam,
1988), p. vi.

“mathematics and muddle”: J.W.S. “Ian” Cassels (1922–2015), former head of
pure mathematics at Cambridge University, quoted in Bruce Schneier, Applied
Cryptography, 2d ed. (New York: Wiley, 1996), p. 381.

Chapter 1 Introduction to Ciphers and Substitution

(Page 1) “A code consists of . . . .”: David Kahn, The Codebreakers, rev. ed. (New York:
Scribner, 1996), p. xvi.

(Page 2) probably wasn’t the original inventor: Edgar C. Reinke, “Classical
cryptography,” The Classical Journal 58:3 (1962).

(Page 2) “There are also letters . . . .”: Suetonius, De Vita Caesarum, Divus Iulius (The
Lives of the Caesars, The Deified Julius; c. 110 CE), paragraph LVI.

(Page 2) x goes to A: Actually, Caesar’s Roman alphabet didn’t have either a w or a z,
but the idea was the same.

(Page 2) “And you too, Brutus”: “Et tu, Brute,” in Latin. William Shakespeare, Julius
Caesar (1599), act 3, scene 1, line 77.

(Page 3) Gauss codified wraparound: In Carl Friedrich Gauss, Disquisitiones
arithmeticae (New Haven and London: Yale University Press, 1966), Section I.

(Page 3) changing letters into numbers: Note that it was decades after Gauss before
anyone thought of applying modular arithmetic to cryptography, as far as we know.
There is evidence that Charles Babbage (who will appear several times in Chapter 2)
did so starting in the 1830s. (Ole Immanuel Franksen, “Babbage and cryptography.
Or, the mystery of Admiral Beaufort’s cipher,” Mathematics and Computers in

Simulation 35:4 (1993), p. 338–39) The first person to publish work involving modular
equations and cryptography seems to have been theMarquis Gaëtan Henri Léon
de Viaris, in 1888. De Viaris is also known for inventing some of the first printing
cipher machines. (Kahn, The Codebreakers, p. 240.)

encipher and decipher: Decode and decrypt are defined analogously.
Note that some older books use decrypt when a modern cryptologist would say
cryptanalyze—this older usage is also standard in some other languages, so you may
see it in books that are translated into English.

(Page 4) Caesar’s point of view: There is also some evidence that Caesar may have
at times used shifts other than 3 and other more complicated ciphers. (Reinke,
“Classical cryptography.”)

(Page xi)

(Page xi)

(Page 2–3)



306 • Notes to Chapter 1

(Page 4) “The system . . . ”: Auguste Kerckhoffs, “La cryptographie militaire, I,” Journal
des sciences militaires IX (1883).

(Page 4) mostly used by militaries and governments: As you might guess from the
title of Kerckhoffs’ essay, La Cryptographie Militaire!

(Page 4) advantages to not keeping your system secret: There’s one other advantage
to not keeping your system secret, which has become widely appreciated more
recently. The more people who have tried out your system, the more likely it is that
any deficiencies will be discovered. This same basic idea is an important part of the
open source software movement.

(Page 5) Augustus’ system: Suetonius, The Divine Augustus, paragraph LXXXVIII.
(Page 5) shift cipher or additive cipher:Many ciphers have more than one name,
especially if you can describe them both with and without modular arithmetic. I will
generally use the term involving modular arithmetic unless I am trying to make a
point.

(Page 7) multiplicative cipher:Multiplicative cipher is really just another name for the
decimation method.

(Page 10) shift left k letters: Or, you could shift right 26− k letters, since 26− k is the
same as −k modulo 26.

(Page 11) 3: There’s not really a single standard notation for this number. Both 3 and
3−1 are common. Gauss merely called it “ 13 (mod 26)”. (Gauss, Disquisitiones
arithmeticae, Article 31.)

(Page 17) “atbash” cipher: In the Hebrew alphabet, the first letter is aleph, which is
encrypted into the last letter, tav, and the second letter, bet, is encrypted into the
second-last letter, shin. In Hebrew, those four letters would spell atbash.

(Page 17) atbash in Jeremiah: Kahn, The Codebreakers, pp. 77–78. The atbash cipher
also got some play in the book The Da Vinci Code. (Dan Brown, The Da Vinci Code,
1st ed. (New York: Doubleday, 2003), Chapters 72–77.)

(Page 18) al-Kindi: Ibrahim A. Al-Kadi, “Origins of cryptology: The Arab
contributions,” Cryptologia 16 (1992).

(Page 20) Hill cipher: Lester S. Hill, “Cryptography in an algebraic alphabet,” The
American Mathematical Monthly 36:6 (1929)

(Page 24) affine Hill cipher: Since the addition step works independently and
differently on each letter, it could be considered an example of a polyalphabetic
cipher like the ones we will see in Chapter 2.

(Page 24) the most common digraph: Parker Hitt, Manual for the Solution of Military

Ciphers (Fort Leavenworth, KS: Press of the Army Service Schools, 1916), Table IV.
(Page 24) the most common trigraph: Hitt, Manual, Table V.
(Page 24) Hill’s machine: Louis Weisner and Lester Hill, “Message protector,” United
States Patent: 1845947, 1932. http://www.google.com/patents?vid=1845947

(Page 24) polyalphabetic substitution ciphers via mechanical devices: The Enigma
machines used by the German military in World War II were examples of these; we
will see them in more detail in Section 2.8.

(Page 24) regained substantial importance: See for example, Section 4.5.
(Page 26) almost as easy to break: The affine Hill cipher has 6 key numbers, so Eve
needs 6 equations, which means 3 blocks of plaintext. In general, she needs 1 more

http://www.google.com/patents?vid=1845947
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block of plaintext than the block size to break an affine Hill cipher, which is not
much of an improvement.

Chapter 2 Polyalphabetic Substitution Ciphers

(Page 29) Arab homophony: Al-Kadi, “Origins of cryptology.”
(Page 29)Mantuan homophony: Kahn, The Codebreakers, 107.
(Page 31) homophones for consonants: Kahn, The Codebreakers, 108.
(Page 32) expected frequency table for English text: Henry Beker and Fred Piper,
Cipher Systems (New York: Wiley, 1982), Table S1.

(Page 32)William Friedman: Ronald William Clark, The Man Who Broke Purple: The

Life of Colonel William F. Friedman, Who Deciphered the Japanese Code in World

War II (Boston: Little Brown, 1977).
(Page 33) Elizebeth Friedman: Elizebeth Smith Friedman’s first name was spelled
with an e in the third syllable because her mother disliked the idea of her being
nicknamed Eliza. Clark, Man Who Broke Purple, p. 37.

(Page 34)William Friedman and the index of coincidence: Although there is no
doubt that Friedman came up with the idea of the index of coincidence, it should be
pointed out that the version given here was formulated by his assistant, Solomon
Kullback.

(Page 35) alphabet of 26 letters: Dealing with a different number of ciphertext letters
would change the exact numbers but not the basic idea.

(Page 35) don’t pick exactly the same A again: It doesn’t really seem fair to allow us
to pick exactly the same letter both times, since of course they will match! In the
cases we considered before, we had a very large amount of text, so the chance of
picking exactly the same letter twice was so small we didn’t worry about it.

(Page 35) phi test:William Friedman, Military Cryptanalysis. Part III, Simpler Varieties

of Aperiodic Substitution Systems (Laguna Hills, CA: Aegean Park Press, 1992), p. 94.
Friedman and Kullback used the Greek letter phi to refer to the actual number of
coincidences; that would be the numerator of our index of coincidence, or the index
times 322× 321.

(Page 35) simple substitution cipher: The plaintext is from Mark Twain, The
Adventures of Tom Sawyer (1876), Chapter 2.

(Page 36) homophonic cipher: The plaintext is from Twain, Adventures of Tom
Sawyer, Chapter 5.

(Page 36) frequency analysis in Europe: The technique was probably known earlier
but not published. Kahn, The Codebreakers, p. 127.

(Page 37) 52 cells: Alberti had 24 letters in his Latin alphabet, and he also had some
cells with numbers that he used for codenumbers. I am not going to worry about
those in order to focus on the polyalphabetic part of the machine.

(Page 37) “Not in regular order . . . .”: Kahn, The Codebreakers, p. 128.
(Page 37) ciphertext alphabet: This is a multiplication cipher we saw earlier.
(Page 39) weakness in Alberti’s cipher: Kahn, The Codebreakers, p. 136.
(Page 39) addition is done before the multiplication: I leave it as an exercise to the
interested reader to show that this really is a kP+m cipher, just not the same as the
one you get if you multiply first and then add. We see more of this sort of thing in
Section 3.3.
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(Page 39) first printed book on architecture: De Re Aedificatoria, published in 1485.
(Page 40) Trithemius’ stranger writings: See, for example, Thomas Ernst, “The
numerical-astrological ciphers in the third book of Trithemius’s Steganographia,”
Cryptologia 22:4 (1998); Jim Reeds, “Solved: The ciphers in book III of Trithemius’s
Steganographia,” Cryptologia 22:4 (1998).

(Page 40) back to the starting position: In fact, Trithemius left out the last line, but we
will need it later.

(Page 41) other tables in Trithemius: C. J. Mendelsohn, “Blaise de Vigenère and the
‘Chiffre Carré,’ ” Proceedings of the American Philosophical Society 82:2 (1940),
p. 118.

(Page 41) Bellaso’s life: Augusto Buonafalce, “Bellaso’s reciprocal ciphers,”
Cryptologia 30:1 (2006).

(Page 41) Bellaso’s key letters:Most modern authors start by labeling the plaintext
alphabet with the key a and leave off the last line. It should shortly become clear
why I did it this way. At any rate, Bellaso was well aware that it didn’t matter how
you arranged the key letters.

(Page 42) “tre teste di leone”: The Bellaso family coat of arms was “Azzurro a tre teste
di leone d’oro poste di profilo e linguate di rosso” (On a blue field three red-tongued
gold lion heads in side view). Augusto Buonafalce, “Bellaso’s reciprocal ciphers.”

(Page 43) key numbers plus the plaintext numbers: In other words, the encryption
equation is C ≡ P+ k modulo 26. For the tabula aversa, it would be C ≡ k− P

modulo 26 ≡ 25P+ k modulo 26.
(Page 43) “sporting his clothes . . . ”: Buonafalce, “Bellaso’s reciprocal ciphers.”
(Page 43) combination of tabula recta and repeating-key: It’s not actually clear who
did first think of putting the two together. Quite possibly Bellaso thought of it and
immediately rejected it in favor of his more complicated system.

(Page 45) ciphertext is effectively random:We see further implications of this in
Section 5.2.

(Page 45) Babbage: Franksen, “Babbage and cryptography.”
(Page 45) Kasiski: Kahn, The Codebreakers, p. 207.
(Page 46) factor: Factor means the same thing as divisor, but for some reason it’s a
more commonly used term when discussing the Kasiski test.

(Page 48) kappa test: Friedman actually developed the kappa test to solve a slightly
different cipher, which we shall see in Section 5.1.

(Page 48) “Here is Edward Bear . . . .”: A. A. Milne,Winnie-the-Pooh, reissue ed (New
York: Puffin, 1992), Chapter 1.

(Page 48) “The Piglet lived . . . ”:Milne,Winnie-the-Pooh, Chapter 3.
(Page 49) no particular reason for other than random: It’s not quite true that two
ciphertexts with different keys will have coincidences totally at random, but it’s
close enough for this test.

(Page 50) percentage of coincidences: Note that we have been very fortunate in our
choice of plaintexts. The difference between 3.8% of 50, which is “about 2,” and 6.6%
of 50, which is “about 3,” is really not enough to reliably distinguish the cases within
the usual margin of error. One ought to use at least 100 letters of text, and 2 or 3
times that would be better.
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(Page 50) slide the plaintext 4 steps: I’ve also “wrapped around” the upper version of
the text when it ended, which won’t affect our argument either way but gives us a
little longer text to work with.

(Page 50) other common meanings: Slide usually refers to a particular device used in
various sorts of substitution ciphers, and shift is generally reserved for additive
ciphers.

(Page 53) adding up the frequencies:William Friedman, Military Cryptanalysis. Part

II, Simpler Varieties of Polyalphabetic Substitution Systems (Laguna Hills, CA:
Aegean Park Press, 1984), pp. 21, 40. In fact, this is a special case of the chi test,
which we see (and justify) in Section 5.1.

(Page 55) brute-force search: It doesn’t really in particular matter if the ciphers are
additive, as long as Eve has a relatively limited number of options.

(Page 55) polyalphabetic cipher: The plaintext is from Lewis Carroll, Alice’s
Adventures in Wonderland (1865), Chapter 1.

(Page 57) Babbage: Franksen, “Babbage and cryptography,” p. 337. One more modern
technique for breaking multiple products of repeating-key encryption involves
a superimposition using the length of one of the keys and then looking at the
“differences” of the rows. One of the keys will cancel out, leaving a difference of
plaintexts encrypted with a single key. Techniques related to those of Section 5.1 can
be used to analyze the “differenced” plaintext and extract the second key. For a full
description, see Alan G. Konheim, Cryptography, A Primer (New York: Wiley, 1981),
Sections 4.11–15.

(Page 58) Hagelin: Kahn, The Codebreakers, pp. 425–26
(Page 58) use of M-209: Robert Morris, “The Hagelin cipher machine (M-209):
Reconstruction of the internal settings,” Cryptologia 2:3 (1978), says “This machine
was in wide use in the U.S. Army for tactical purposes until the early 1950’s.”
Kahn, The Codebreakers, photo facing p. 846 (described on p. 1151) shows a picture
of an American soldier using an M-209 at Hypochong, Korea, in October 1951.

(Page 60) inactive positions of lugs: Actually, it is not entirely clear from the photos
I have seen of the C-362 (Jerry Proc, “Hagelin C-362,” http://www.jproc.ca
/crypto/c362.html.) how many, if any, inactive positions there are. In fact, there seem
to have been several different versions of the C-36, which may have had different
numbers of lugs and/or positions. The M-209 definitely had two inactive positions.

(Page 61) C-36 repeating-key substitutions: Technically the first substitution is by a
tabula aversa, and the rest are by tabula recta. More importantly the product cipher
is still a repeating-key cipher, and in fact it is a reciprocal tabula aversa cipher.

(Page 61) pin and lug settings: These are the actual lug settings for the version of the
C-36 with fixed lugs, according to Frédéric André, “Hagelin C-36,” http://fredandre
.fr/c36.php?lang=en.

(Page 62) “Bork, bork, bork!”: ABC, “The Muppet Show: Sex and Violence,” Television,
1975.

(Page 62) key settings on the C-36: Strictly speaking, the wheel starting positions
could remain the same and the pins could all be changed to compensate. However,
changing the starting positions is much easier. Therefore, it was a common way to
add extra variation to the key.

http://www.jproc.ca/crypto/c362.html
http://fredandre.fr/c36.php?lang=en
http://www.jproc.ca/crypto/c362.html
http://fredandre.fr/c36.php?lang=en
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(Page 63) distinguishing the active pins statistically: One way is to use the chi test,
which we see in Section 5.1.

(Page 63) ciphertext-only attack on Hagelin machines:Wayne G. Barker,
Cryptanalysis of the Hagelin Cryptograph (Laguna Hills, CA: Aegean Park Press,
1981), especially Chapter 5; Beker and Piper, Cipher Systems, Section 2.3.7 has a
slightly different way to determine the lug settings.

(Page 63) known-plaintext attack on Hagelin machines: Barker, Cryptanalysis of the
Hagelin Cryptograph, especially Chapter 6; and Beker and Piper, Cipher Systems,
Section 2.3.5–2.3.6; the latter closely follows Morris, “The Hagelin cipher machine.”
Barker, Cryptanalysis of the Hagelin Cryptograph, also has several other attacks
using various types of information.

(Page 64) recent research: Karl de Leeuw, “The Dutch invention of the rotor machine,
1915–1923,” Cryptologia 27:1 (2003).

(Page 64) four others: See Friedrich L. Bauer, “An error in the history of rotor
encryption devices,” Cryptologia 23:3 (1999), for the time line of these four, but note
that this was written before van Hengel and Spengler’s work was brought to light.

(Page 64) evidence that Koch had access: de Leeuw, “Dutch invention.” It is not clear
to me if Scherbius could have seen the Dutch patent application before he filed his
own.

(Page 64) independent inventions: Damm’s rotor, in particular, does not work quite
the same way as the others. See, for example, Friedrich Bauer, Decrypted Secrets,
3rd, rev., updated ed. (Berlin [u.a.]: Springer, 2002), Section 7.3.

(Page 64) multiplicative ciphers in rotors: There’s no particular reason to use
multiplicative ciphers in rotors, and in fact there’s some reason not to—for starters,
there aren’t really enough of them. However, it will make it easy to write formulas
and the general principle isn’t really very different.

(Page 65) following a rotor through: If you feel like simplifying the formula, you
will find that it’s actually an affine cipher, but that isn’t really important for our
discussion.

(Page 66) once every 26 letters: Note that in most versions of the famous German
Enigma rotor machine, the motion is more complicated that this. For details on some
of the kinds of Enigma machines and their differences, including rotor motions,
see David H. Hamer, Geoff Sullivan, and Frode Weierud, “Enigma variations: An
extended family of machines,” Cryptologia 22:3 (1998).

(Page 68) the equations are nested: The equations would be even more complicated if
we had used a more complicated rotor wiring—you might be tempted to simplify the
equations somewhat by multiplying through, but with a more practical system you
can’t even do that.

(Page 70) key settings for the Enigma: Later complications included as many as
8 possible rotors, out of which 3 (or, in some cases, 4) could be chosen, rotating
and/or reconfigurable reflectors, and variations on the mechanism that determined
how often the rotors after the first turned.

(Page 70) Enigma: There are many excellent descriptions of the Enigma and its early
history. Those that I have consulted include Józef Garliński, The Enigma War: The

Inside Story of the German Enigma Codes and How the Allies Broke Them,
hardcover, 1st American ed. (New York: Scribners, 1980), Chapters 1–2 and
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Appendix; Bauer, Decrypted Secrets, Section 7.3; and Konheim, Cryptography,
Sections 5.6–5.7.

(Page 70) determining rotor wirings: Kahn, The Codebreakers, pp. 973–74; see also
Garliński, Enigma War, Appendix; and Bauer, Decrypted Secrets, Section 19.6. Many
other methods were devised for more or less specialized circumstances.

(Page 71) determining key settings: Kahn, The Codebreakers, pp. 975–76; see also
Garliński, Enigma War, Appendix; and Bauer, Decrypted Secrets, Section 19.6. For
probable word attacks, see, for example, Bauer, Section 19.7. The Poles and British
developed some very important forerunners of modern computers in order to carry
out the necessary brute force searches.

(Page 71) probable words: For a little more on this technique, see Section 5.1.
(Page 71) modern attack on rotors: See Konheim, Cryptography, Sections 5.4–5.5 and
5.8–5.9 for details.

(Page 71) Van Hengel and Spengler: de Leeuw, “Dutch invention.”
(Page 72) Hebern: Kahn, The Codebreakers, pp. 417–20.
(Page 72) Scherbius: Kahn, The Codebreakers, pp. 421–22; David Kahn, Seizing the
Enigma, 1st ed. Boston: Houghton Mifflin, 1991, pp. 31–42.

(Page 72) lack of profits for the inventors: Another well-known rotor machine, the
British Typex, was explicitly based on the Enigma during World War II. (Louis Kruh
and C. A. Deavours, “The Typex Cryptograph,” Cryptologia 7:2 (1983).) Similarly,
the Soviets introduced their Fialka rotor machine in 1956. (Paul Reuvers and Marc
Simons, “Fialka,” http://www.cryptomuseum.com/crypto/fialka/) Presumably,
neither country considered compensating the original rotor machine inventors. The
Japanese World War II cipher machine known as RED to the Americans also was a
rotor machine, with elements similar to Damm’s. The more well-known PURPLE
machine, however, used a different principle. For more on the Japanese machines,
see, for example, Alan G. Konheim, Computer Security and Cryptography (Hoboken,
NJ: Wiley-Interscience, 2007), Chapter 7.

(Page 73) Damm and Hagelin: Kahn, The Codebreakers, pp. 425–27.

Chapter 3 Transposition Ciphers

(Page 75) authenticity of the scytale: Thomas Kelly, “The myth of the skytale,”
Cryptologia 22 (1998). Another possibility is that the scytale was authentic but
worked in an entirely different way. See, for instance, Reinke, Classical cryptography.

(Page 75) “The dispatch-scroll . . . ”: Plutarch, Plutarch’s Lives (London; New York:
Heinemann; Macmillan, 1914), Lysander, Chapter 19.

(Page 76) “Go tell the Spartans . . . ”: Attributed by Herodotus to Simonides of Ceos.
Translated by William Lisle Bowles. Quoted in Edward Strachey, “The soldier’s
duty,” The Contemporary Review XVI (1871).

(Page 78) only four possibilities: If we used numbers that were not prime instead of
3 and 11, there would be a few more. Can you tell how many?

(Page 78) methods of reading out of the rectangle: Hitt, Manual, Chapter V, Case 1,
p. 26–27.

(Page 78) Friedman’s 1941 manual:William Friedman, Advanced Military

Cryptography (Laguana Hills, CA: Aegean Park Press, 1976).
(Page 80) “permits of no variation . . . ”: Hitt, Manual, Chapter V, Case 1-i, p. 29.

Notes to Chapters 2–3
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(Page 80) “they do not depend on a key . . . ”: Hitt, Manual, Chapter V, Case 1, p. 30.
(Page 80) the Earl of Argyll’s cipher: David W. Gaddy, “The first U.S. Government
Manual on Cryptography,” Cryptologic Quarterly 11:4 (1992).

(Page 80) Abraham Lincoln’s cipher example: Kahn, The Codebreakers, Chapter 7,
p. 215. See David W. Gaddy, “Internal struggle: The Civil War,” pages 88–103 of
Masked Dispatches: Cryptograms and Cryptology in American History, 1775–1900,
3rd ed. National Security Agency Center for Cryptologic History, 2013 for more
details on the origin of this cipher system.

(Page 81) al-Kindi’s transpositions: Al-Kadi, “Origins of cryptology.”.
(Page 81) ibn ad-Duraihim’s transpositions: Al-Kadi, “Origins of cryptology.”
(Page 81) examples of ibn ad-Duraihim’s transpositions: Kahn, The Codebreakers,
p. 96.

(Page 81) “Drink to the rose . . . ”: Al-Hasan ibn Hani al-Hakami Abu Nuwas, “Don’t
cry for Layla,” Princeton Online Arabic Poetry Project,
https://www.princeton.edu/∼arabic/poetry/layla.swf.

(Page 82) ways to notate permutations:Warning: Some mathematicians prefer to use
a notation based on where the letters go instead of where they come from. We will
find our version more convenient, especially when we see cipher operations that
repeat or drop some message elements, later in this section and in Chapter 4.

(Page 82) “The battle and the sword . . . ”: Abu at-Tayyib Ahmad ibn al-Husayn
al Mutanabbi, “al-Mutanabbi to Sayf al-Dawla,” Princeton Online Arabic Poetry
Project, http://www.princeton.edu/∼arabic/poetry/al_mu_to_sayf.html.

(Page 83) inverse of a permutation: Note that the numbers 4132 have reappeared. This
is not a coincidence—can you figure out the connection?

(Page 83) HDETS REEKO NTSEM WELLW: The plaintext is from al Mutanabbi,
“al-Mutanabbi to Sayfal-Dawla.”

(Page 84) functions: Yes, this really is the same concept as the functions you learned
about in high school, only it acts on letters and positions instead of real numbers.
We will talk more about this in Section 4.3.

(Page 84) trivial permutation: Can you figure out how to write the trivial
permutation?

(Page 85) expansion functions: In fact, cryptographers often call these functions
expansion permutations, despite the fact that they are not permutations at all. I think
expansion function is a good compromise.

(Page 86) compression function: Or compression permutation.
(Page 88) permutation products are not commutative: Just to make things a little
more confusing, not all mathematicians write permutation products in the same
order. Some people prefer to do the right permutation first and then the left instead
of the way we did it. If you’re one of those people, please don’t write me any nasty
letters!

(Page 88) encrypt only with expansion functions, . . . : Unless you do something
really fancy, like we will see in Section 4.3.

(Page 90) cipher corresponding to poetry: No, that’s not a mistake—this time the
keyword and the permutation give us the same numbers. Can you see why?

(Page 92) first appearance of keyed columnar transposition: John (J. F.) Falconer,
Rules for Explaining and Decyphering All Manner of Secret Writing, Plain and

https://www.princeton.edu/~arabic/poetry/layla.swf
http://www.princeton.edu/~arabic/poetry/al_mu_to_sayf.html
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Demonstrative with Exact Methods for Understanding Intimations by Signs,

Gestures, or Speech . . . , 2nd ed. (London: Printed for Dan. Brown . . . and Sam
Manship . . . , 1692), p. 63.

(Page 92) John Falconer: Kahn, The Codebreakers, p. 155.
(Page 92) ciphers based on keyed columnar transposition: For example, see
numerous references in Kahn, The Codebreakers.

(Page 92) decrypting a keyed columnar transposition quickly: Note the “shoes and
socks” principle again. Alice writes the plaintext without using the key and reads the
ciphertext off using the key. So Bob reverses the process by writing the ciphertext in
using the key and reading it off without using the key.

(Page 96) Nihilist transposition cipher: Kerckhoffs, “La cryptographie militaire, I,”
pp. 16–17. The Nihilist transposition cipher should not be confused with the Nihilist
substitution cipher, which is something else.

(Page 96) double transposition in World War II: Kahn, The Codebreakers, p. 539. To
be exact, this was generally the “incompletely filled rectangle” variation explained
in the sidebar on page 104. See also Leo Marks, Between Silk and Cyanide, 1st US ed
(New York: Free Press, 1999) for much more on ciphers used by British and Allied
agents during World War II.

(Page 97) frequency of the letters will be the same: Barring the addition of some
rather unusual nulls.

(Page 97) approximately 38.1% of them will be vowels: I’m counting only a, e, i, o,
and u as vowels and always counting them as vowels. You can argue this, but it
doesn’t really matter as long as you are consistent.

(Page 98) variance: If you are familiar with the standard deviation, the variance is the
square of the standard deviation. But the variance will be a little easier to use for our
situation.

(Page 99) 10-letter word with no a’s, e’s, i’s, o’s, or u’s: I haven’t actually been able
to find any 10-letter words like this. The only 11-letter word I’ve been able to find
is “twyndyllyng,” an obsolete term for a small twin. Maybe you know some others.

(Page 99) hopelessly jumbled: If this were a permutation cipher instead of a keyed
columnar transposition, hopelessly jumbled would probably be an exaggeration.
Most likely, we would have nonconsecutive bits of 2 or maybe 3 plaintext rows
mixed together on each ciphertext row. Nevertheless, this statistical method still
works quite well.

(Page 101) only ones that are really likely to follow column I: Of course, we should
really account for the possibility that column I is the last column. In that case we
could look for columns that could precede it or look for a column that would follow
it after wrapping around, which would shift each letter down one in this example.

(Page 102) digraph frequencies:We are using the table of Hitt, Manual, Table IV, as in
Section 1.6.

(Page 102) adding the frequencies:William Friedman, Military Cryptanalysis. Part IV,

Transposition and Fractionating Systems (Laguna Hills, CA: Aegean Park Press,
1992), p. 5.

(Page 102) it’s wrong mathematically: Friedman, Military Cryptanalysis. Part IV, p. 6.
(Page 102) using logarithms: In Friedman, Military Cryptanalysis. Part IV, p. 6, note 5,
he describes this as, “A suggestion for which the author is indebted to Mr. A. W.
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Small, junior cryptanalyst in this office. The principle makes practicable the use of
tabulating machinery for the purpose of speeding up and facilitating the matching
of columns in the anagramming process.” For tabulating machinery, we would now
read computers.

(Page 103) we will use log .0001:We can’t use the logarithm of 0 because the logarithm
of 0 is undefined.

(Page 103) the closer a log weight is to 0: Because 0 is the logarithm of 1.
(Page 103) appears only in column II: Or perhaps column V if we have wrapped
around to the next line.

(Page 103) keyed columnar transposition cipher: The plaintext is from Howard Roger
Garis, Uncle Wiggily’s Adventures (New York: A. L. Burt, 1912), Story I.

(Page 103) guess at the keyword: Note that there’s no way of telling exactly what the
keyword used to generate a permutation was. For example, both the keyword word
and the keyword idea give you the same cipher—try it and see!

(Page 105) superimposition for transposition ciphers: In fact, the use of the contact
method for a permutation cipher looks very much like the use of superimposition
we saw for repeating-key ciphers, and the technique of multiple anagramming we
are about to see looks very much like the version of superimposition we see in
Section 5.1.

(Page 106) multiple anagramming: The plaintexts are the titles of a series of books by
Howard Garis.

(Page 107) form of a rotation: The reason we put k+ 1 at the beginning of the row
instead of k is so that the stupid key is k = 0, which is convenient.

(Page 107)Madryga:W. E. Madryga, “A High Performance Encryption Algorithm,” in
Proceedings of the 2nd IFIP International Conference on Computer Security: a Global

Challenge, edited by James H. Finch and E. Graham Dougall (Amsterdam:
North-Holland, 1984).

(Page 107) RC5: Ronald L. Rivest, “The RC5 encryption algorithm,” in Bart Preneel
(ed.), Fast Software Encryption (Springer Berlin Heidelberg, 1995).

(Page 107) RC6: Ronald L. Rivest et al., “The RC6TM block cipher,” NIST, August 1998,
series AES Proposals. RC5 and RC6, incidentally, were invented—with help, in the
case of RC6—by Ron Rivest, whom we will meet again in Chapter 7. RC6 was a
finalist in the Advanced Encryption Standard competition, which I will talk about
in Chapter 4.

(Page 107) Akelarre: Gonzalo Alvarez et al., “Akelarre: A new block cipher algorithm,”
in Stafford Tavares and Henk Meijer (eds.), Proceedings of the SAC ’96 Workshop

(Kingston, ON: Queen’s University, 1996).
(Page 107)Madryga flawed: Alex Biryukov and Eyal Kushilevitz, “From differential
cryptanalysis to ciphertext-only attacks,” in Hugo Krawczyk (ed.), Advances in
Cryptology—CRYPTO ’98 (Springer Berlin Heidelberg, 1998).

(Page 107) Some attacks on RC5: B. S., Kaliski and Yiqun Lisa Yin, “On the security of
the RC5 encryption algorithm,” RSA Laboratories (September 1998).

(Page 107) Comparison of RC6 to AES: James Nechvatal et al., Report on the
development of the Advanced Encryption Standard (AES), NIST (October 2000).

(Page 107) Akelarre partly based on RC5: Alvarez et al., “Akelarre.”
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(Page 108) Attacks on Akelarre: Niels Ferguson and Bruce Schneier, “Cryptanalysis of
Akelarre,” in Carlisle Adams and Mike Just (eds.), Proceedings of the SAC ’97

Workshop (Ottawa, ON: Carleton University, 1997); Lars R., Knudsen and Vincent
Rijmen, “Ciphertext-only attack on Akelarre,” Cryptologia 24:2 (2000). The second
of these papers includes the attack, which essentially bypasses everything but the
rotation. An earlier version of that paper was called “Two rights sometimes make a
wrong,” due to the combining of elements of two strong ciphers into a weak one.

(Page 108) process very much like anagramming: Although it is actually somewhat
easier for two reasons. First, the number of columns is known, since a cipher with a
variable number of columns would be comparatively rather difficult to implement
on a computer. Second, since we know the permutation is a rotation, there are many
fewer possibilities to try.

Chapter 4 Ciphers and Computers

(Page 109) Polybius: Polybius, The HistoriesCambridge, MA: Harvard University Press,
1922–1927, Book X, Chapters 43–47.

(Page 109) using torches to send coded messages: This was a practice with great
longevity—the most famous example to Americans would be “one if by land, two if
by sea.”

(Page 109) “It is as follows . . . ”: Polybius, Histories, X.45.7–12.
(Page 110) Polybius’ cipher doesn’t have a key: To be fair, it’s not clear that Polybius
was even interested in the secrecy of the message—he seems most concerned with
just getting messages quickly and accurately across long distances.

(Page 112) multiple tables for ternary numerals: Or we could use 3-dimensional
tables, but those are difficult to print in a book like this one.

(Page 112) ternary table with grouped digits: The similarity with the base 9 table is
not a coincidence. It comes from the similarity between the formulas r · 9+ c and
r · 9+ (c1 · 3+ c2) for the letter in row r and column c.

(Page 113) modern English example: Bacon used only 24 letters in his alphabet,
treating i and j as the same and u and v as the same, and he started with a as 00000
instead of 00001. He also used the symbols a and b instead of 0 and 1. In fact, it’s not
clear that he thought of his strings of a’s and b’s as numbers at all. On the other
hand, he did put them in the same order that binary numerals would come in.

(Page 113) biformed alphabet: Francis Bacon, Of the Advancement and Proficience of

Learning (Oxford: Printed by Leon Lichfield, Printer to the University, for Rob
Young and Ed Forrest, 1640), Book VI, Chapter I, Part III.

(Page 114) Gauss and Weber:William V. Vansize, “A new page-printing telegraph,”
Transactions of the American Institute of Electrical Engineers 18 (1902), p. 22.

(Page 114) Baudot: Vansize, “New page-printing telegraph,” p.22.
(Page 114) Vernam had Baudot’s code: To be perfectly accurate, this was not Baudot’s
original code but a revised version.

(Page 114) noncarrying addition: Noncarrying addition can also be thought of as
vector addition modulo 2 for those who are really into that. For those with computer
programming experience, you might know it as bitwise exclusive-or, aka XOR.

(Page 115) Vernam’s method: Gilbert Vernam, “Secret signaling system,” U.S. Patent:
1310719, 1919, http://www.google.com/patents?vid=1310719.

Notes to Chapters 3–4

http://www.google.com/patents?vid=1310719


316 • Notes to Chapter 4

(Page 116) straddling checkerboard: As usual, a real system would mix up the order
of the letters and/or digits according to some key.

(Page 116) “most interesting and practical”: Friedman, Military Cryptanalysis.

Part IV, p. 97.
(Page 116) GedeFu 18:Michael van der Meulen, “The road to German diplomatic
ciphers—1919 to 1945,” Cryptologia 22:2 (1998), p. 144.

(Page 116) called it ADFGVX: David Kahn, “In memoriam: Georges-Jean Painvin,”
Cryptologia 6:2 (1982), p. 122. When first introduced, the square was 5× 5, and only
the letters ADFGX were used. The ciphertext letters were apparently chosen to
provide an early example of error correction since their Morse code equivalents were
different enough not to be easily confused.

(Page 117) outline of general method: In the original version of M. Givierge, Cours de
cryptographie (Paris: Berger-Levrault, 1925).

(Page 117) identical beginnings or endings: Kahn, The Codebreakers, p. 344. In
modern terms, we would call these differential attacks, and we will see them again
in Section 4.4.

(Page 117) division into columns: Friedman, Military Cryptanalysis. Part IV,
pp. 123–24.

(Page 118) diffusion: C. E. Shannon, “Communication theory of secrecy systems,” Bell
System Technical Journal 28:4 (1949).

(Page 118) confusion: Shannon, “Communication theory.” The common definition of
confusion has mutated somewhat over the years. Schneier, Applied Cryptography,
p. 237, for instance, defines it as “obscur[ing] the relationship between the plaintext
and the ciphertext,” for example, through substitution.

(Page 118) avoid high-frequency letters clustering: Otherwise it may be possible to
distinguish which letters in the ciphertext designate rows and which designate
columns. This information can be used in a similar way to vowels and consonants
to find the number of columns. Then one can attempt to anagram the columns
into “digraphic” combinations whose phi test index of coincidence matches a
monoalphabetic cipher. A complete description can be found in Friedman, Military

Cryptanalysis. Part IV, pp. 124–43.
(Page 120) “Speaking loosely . . . ”: Shannon, “Communication theory,” p. 712.
(Page 121) depend on a key k: U and V could also depend on two different keys for
more security.

(Page 122) didn’t really start thinking about Shannon’s principles: At least, as far as
the public record is concerned. We still know very little about what organizations
like the NSA were doing during this time period.

(Page 122) Feistel through 1944: Steven Levy, Crypto, 1st paperback ed (New York:
Penguin (Non-Classics), 2002), p. 40.

(Page 122) Feistel 1944–1967: Kahn, The Codebreakers, p. 980.
(Page 122) perhaps because of NSA pressure:Whitfield Diffie and Susan Landau,
Privacy on the Line, updated and expanded edition (Cambridge, MA: MIT Press,
2010), p. 57.

(Page 124) 128 bits: Feistel was apparently thinking the same thing, although most of
his contemporaries thought that 64 bits was plenty at the time. See Horst Feistel,
“Cryptography and computer privacy,” Scientific American 228:5 (1973).
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(Page 126) 32 groups of 4: Feistel, “Cryptography and computer privacy.”
(Page 127) example of an SP-network: The example will have one small exception,
which I will point out, to the SP-network structure.

(Page 127) avalanche effect: Feistel, “Cryptography and computer privacy,” p.23.
(Page 127) 3-bit example: Kwangjo Kim, Tsutomu Matsumoto, and Hideki Imai, “A
recursive construction method of S-boxes satisfying strict avalanche criterion,” in
CRYPTO ’90: Proceedings of the 10th Annual International Cryptology Conference

on Advances in Cryptology, edited by Alfred Menezes and Scott A. Vanstone.
(Berlin/Heidelberg, New York: Springer-Verlag, 1991).

(Page 128) 128-bit S-boxes: Eight-bit S-boxes are common as of this writing and 16-bit
S-boxes are not unheard of, but one expects that by the time we are ready to easily
manufacture and/or program fast 128-bit S-boxes, we will need even larger ones!

(Page 128) adding the round key modulo 2: Occasionally the round key is added
modulo something else or combined in some other way.

(Page 130) Lucifer: Levy, Crypto, p. 41. Apparently Lucifer was a pun on an earlier
name, Demon, which was originally merely short for Demonstration. The reason for
the abbreviation was simply that the computer system they were using couldn’t
handle 13-letter file names!

(Page 130) IBM 2984: Diffie and Landau, Privacy on the Line, p. 251.
(Page 130) soliciting proposals: Actually, IBM let the initial response date in 1973 pass,
and it wasn’t until 1974 that IBM’s chief scientist offered DSD-1 as a candidate to
NBS. Since no responses to NBS’s first call for proposals had even remotely met the
standards, NBS immediately reopened the solicitation. Levy, Crypto, pp. 51–52.

(Page 130) NSA didn’t want to design DES: Diffie and Landau, Privacy on the Line,
p. 59.

(Page 130) NBS requested help: Schneier, Applied Cryptography, p. 266.
(Page 130) reduction from 128 bits to 64: Levy, Crypto, p. 58, quotes Walt Tuchman,
the head of the IBM product development group.

(Page 131) some people at IBM suspected: Notably Alan Konheim, who headed the
mathematical team. Levy, Crypto, p. 59.

(Page 131) error-checking mechanism:Walt Tuchman again. Levy, Crypto, p. 58.
(Page 131) 48-bit key: Thomas R. Johnson, American Cryptology during the Cold War,

1945–1989; Book III: Retrenchment and Reform, 1972–1980 (Center for Cryptologic
History, National Security Agency, 1995), p. 232. The relevant sentence is redacted in
the version posted on the NSA Web site but can be found in the version posted at
http://cryptome.org/0001/nsa-meyer.htm.

(Page 131) differential attack: Eli Biham and Adi Shamir, Differential Cryptanalysis of
the Data Encryption Standard (New York: Springer, 1993), p. 7. This differential
attack is somewhat similar to the attack on the ADFGVX cipher we mentioned in
Section 4.2, although the high level of diffusion makes it much harder to carry out.

(Page 131) particularly resistant: Biham and Shamir, Differential Cryptanalysis,
pp. 8–9.

(Page 131) S-boxes had been redesigned: Don Coppersmith, by personal email cited
in Eli Biham, “How to make a difference: Early history of differential cryptanalysis,”
slides from invited talk presented at Fast Software Encryption, 13th International
Workshop, 2006, http://www.cs.technion.ac.il/∼biham/Reports/Slides/fse2006

http://cryptome.org/0001/nsa-meyer.htm
http://www.cs.technion.ac.il/~biham/Reports/Slides/fse2006-history-dc.pdf
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-history-dc.pdf, and publicly in D. Coppersmith, “The Data Encryption Standard
(DES) and its strength against attacks,” IBM Journal of Research and Development

38:3 (1994).
(Page 131) kept secret until rediscovered: Coppersmith, “Data Encryption Standard.”
There was still some lingering suspicion that the NSA had put some kind of “back
door” in the S-boxes to weaken them, but in general Coppersmith’s explanation was
accepted by the cryptographic community.

(Page 132) purpose of P-boxes: Schneier, Applied Cryptography, p. 271.
(Page 134) linear cryptanalysis: Schneier, Applied Cryptography, p. 293.
(Page 134) linear cryptanalysis not known: Or if it was, they chose for some reason
not to do anything about it. Coppersmith, “Data Encryption Standard.”

(Page 134) 1728 custom chips: According to The Electronic Frontier Foundation,
“Frequently Asked Questions (FAQ) about the Electronic Frontier Foundation’s ‘DES
cracker’ machine,” http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker
/HTML/19980716_eff_des_faq.html. Other sources give between 1536 and 1856 chips.

(Page 134) time and cost: Electronic Frontier Foundation, “ ‘DES cracker’ machine.”
(Page 135) DES was breakable: Susan Landau, “Standing the test of time: The Data
Encryption Standard,” Notices of the AMS 47:3 (March 2000).

(Page 135) request for nominations: “Announcing request for candidate algorithm
nominations for the Advanced Encryption Standard (AES),” Federal Register 62:177
(1997).

(Page 135) foreign national reviewers: Susan Landau, “Communications security for
the twenty-first century: The Advanced Encryption Standard,” Notices of the AMS

47:4 (April 2000). When the AES selection process started, it was still generally illegal
to export cryptographic software with keys longer than 40 bits, even DES, outside
the United States. NIST, however, allowed any foreign national to obtain software
implementations of the AES candidates just as long as they registered with NIST and
promised not to pass on the algorithms.

(Page 135) three public conferences: Including one outside the United States, in Rome,
Italy.

(Page 135) at least one non-US national: Landau, “Communication security.”
(Page 135) “Rijndael”: As you would guess, the cipher designers combined their names
to name the cipher. According to Rijmen, “If you’re Dutch, Flemish, Indonesian,
Surinamer or South-African, it’s pronounced like you think it should be. Otherwise,
you could pronounce it like ‘Reign Dahl,’ ‘Rain Doll,’ ‘Rhine Dahl.’ We’re not picky.
As long as you make it sound different from ‘Region Deal.”’ Vincent Rijmen, “The
Rijndael page,” http://www.ktana.eu/html/theRijndaelPage.htm. Also quoted in
Wade Trappe and Lawrence C. Washington, Introduction to Cryptography with

Coding Theory, 2nd ed. (Upper Saddle River, NJ: Prentice Hall, 2005), pp. 151–152.
Most English-speaking people seem to say “Rhine Dahl,” or just “A-E-S.”

(Page 135) AES block size: The original Rijndael submission allowed block sizes of 192
and 256 bits as well as 128, but NIST decided not to include them in the standard.
Note that increasing the block size does not necessarily increase the security of a
cipher.

(Page 137) one gigantic P-box: They have particularly cited the high cost of
implementation of large P-boxes in modern ciphers. See, for example, p. 75 and

http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
http://www.ktana.eu/html/theRijndaelPage.htm
http://www.cs.technion.ac.il/~biham/Reports/Slides/fse2006-history-dc.pdf
http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
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p. 131 of Joan Daemen and Vincent Rijmen, The Design of Rijndael, 1st ed.
(Berlin/Heidelberg, New York: Springer, 2002).

(Page 137) dispersion: This could be considered a form of diffusion, although it does
not provide the avalanche effect which is now considered highly desirable. It should
also remind you of the transposition ciphers using rectangles from Section 3.2.

(Page 138) Hill cipher encryption: The AES designers call the transformation a D-box,
for diffusion. Daemen and Rijmen, The Design of Rijndael, p. 22. The last round
leaves out the Hill cipher step. For technical reasons, this allows a more efficient
implementation of the decryption algorithm. Daemen and Rijmen, pp. 45–50.

(Page 138) DES S-boxes were “human-made”: Coppersmith, “Data Encryption
Standard.”

(Page 139) not so complicated in a different way: This turns out to have been
somewhat controversial. The AES S-box gives good protection against differential
and linear attacks, but there have been other attacks proposed that may be able to
take advantage of the higher-level simplicity of the AES S-box. See, for example,
Daemen and Rijmen, The Design of Rijndael, p. 156.

(Page 140) published list: According to Joan Daemen and Vincent Rijmen, AES
Proposal: Rijndael (NIST, September 1999), series AES Proposals. , p. 25, the
designers used the list from R. Lidl and H. Niederreiter, Introduction to Finite Fields

(Cambridge, UK: Cambridge University Press, 1986), p. 378.
(Page 140) prime modulo 2: A polynomial can have factors when you are working
in modular arithmetic even though it doesn’t have any in ordinary arithmetic.
For example, x2 + 1 is prime in ordinary arithmetic but not modulo 2, since
(x+ 1)× (x+ 1) = x2 + 2x+ 1 = x2 + 1.

(Page 140) x8 + x4 + x3 + x+ 1: Daemen and Rijmen, The Design of Rijndael, p. 16.
Since the flap about the DES S-boxes, it’s been considered very important for cipher
designers to explain any time they choose an arbitrary number, polynomial, and so
on, exactly where they got it. This helps convince people that they haven’t slipped in
any back doors. Numbers with this sort of explanation are sometimes called
“nothing up my sleeve” numbers.

(Page 141) AES polynomial arithmetic: The technical term for this type of polynomial
arithmetic modulo a prime polynomial and a prime number is finite field
arithmetic.

(Page 142) some concern: Nechvatal et al., “Report on the Development of the AES,”
p. 28.

(Page 142) XSL not better than brute force: Carlos Cid and Ralf-Philipp Weinmann,
“Block ciphers: Algebraic cryptanalysis and Gröbner bases,” in Massimiliano Sala,
Shojiro Sakata, Teo Mora, Carlo Traverso, and Ludovic Perret (eds.), Gröbner Bases,
Coding, and Cryptography (Springer Berlin Heidelberg, 2009), p. 313.

(Page 142) polynomial attacks in the future: Cid and Weinmann, “Block Ciphers,”
p. 325.

(Page 142) known-key and related-key attacks: See, for example, Niels Ferguson,
et al., Cryptography Engineering (New York: Wiley, 2010), p. 55 and the references
cited there.

(Page 142) not used in the way they were intended: See, for example,
Schneier, Applied Cryptography, p. 447, for an example of a situation where a
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known-key attack could be applied, and Ferguson et al., Cryptography Engineering,
pp. 323–24 for an example of a related-key attack on the WEP (Wired Equivalent
Privacy) algorithm originally used to protect wireless local area computer
networks.

(Page 142) 2011 attack on AES: Andrey Bogdanov, Dmitry Khovratovich, and
Christian Rechberger, “Biclique cryptanalysis of the full AES,” in Dong Hoon Lee
and Xiaoyun Wang (eds.), Advances in Cryptology—ASIACRYPT 2011 (Springer
Berlin Heidelberg, 2011). Some reports of this attack suggested that all 288 sets of
texts would need to be stored in memory at once, which would be wildly
impractical. This does not, in fact, seem to be the case.

(Page 142) unreasonably long time: Dave Neal, “AES encryption is cracked,” The
Inquirer (August 17, 2011).

(Page 143) reevaluate AES: NIST,Announcing the Advanced Encryption Standard
(AES), NIST, November 2001. It’s not clear whether any formal reevaluations have
been done.

(Page 143) NBS document: NBS, “Guidelines for Implementing and Using the NBS
Data Encryption Standard,” April 1981.

(Page 143) draft proposal for format-preserving encryption:Morris Dworkin,
“Recommendation for block cipher modes of operation: Methods for
format-preserving encryption,” NIST, July 2013.

(Page 143) report from April 2015:Morris Dworkin and Ray Perlner, Analysis of
VAES3 (FF2), 2015. The report, from two researchers at NIST, ends with “[t]he
authors acknowledge the National Security Agency for notifying NIST in general
terms that FF2 might not meet NIST’s security requirements.”

(Page 144) homomorphic encryption in 1978: Ronald L. Rivest, Len Adleman, and
Michael L. Dertouzos, “On Data Banks and Privacy Homomorphisms,” in
Richard A. DeMillo, David P. Dobkin, Anita K. Jones, and Richard J. Lipton (eds.),
Foundations of Secure Computation (New York: Academic Press, 1978).

(Page 144) first fully homomorphic system: Craig Gentry, “Fully homomorphic
encryption using ideal lattices,” in Proceedings of the Forty-first Annual ACM

Symposium on Theory of Computing, Association for Computing Machinery Special
Interest Group on Algorithms and Computation Theory (ACM, 2009). Gentry and
some colleagues soon developed a simpler version of the original scheme. A
description of the second scheme, with a nice extended analogy based on allowing
workers to assemble jewelry without being able to steal the raw materials, can
be found in Craig Gentry, “Computing arbitrary functions of encrypted data,”
Communications of the ACM 53:3 (2010). Both of these schemes, and most of the
fully homomorphic schemes proposed since, are asymmetric-key cryptographic
schemes of the sort we discuss in Section 7.3. These systems tend to be easier to
make homomorphic since they are easier to manipulate mathematically. As Gentry
points out, however, a fully homomorphic encryption scheme can be either
symmetric or asymmetric. For a relatively simple (but not practical) symmetric
scheme see Jeffrey Hoffstein et al., An Introduction to Mathematical Cryptography,
2nd ed. (New York: Springer, 2014), Example 8.11.

(Page 144) two government agencies and at least one company: NSA Research
Directorate staff, “Securing the cloud with homomorphic encryption,” The Next
Wave 20:3 (2014).
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(Page 144) NSA document: Spiegel Staff, “Prying eyes: Inside the NSA’s war on
Internet security,” Spiegel Online (2014).

(Page 144) full document: NSA, “Summer mathematics, R21, and the Director’s
Summer Program,” The EDGE: National Information Assurance Research Laboratory

(NIARL) Science, Technology, and Personnel Highlights, 2008, http://www.spiegel.de
/media/media-35550.pdf.

Chapter 5 Stream Ciphers

(Page 145) “sweet spot”:Mendelsohn, Blaise de Vigenère and the “Chiffre Carré”, for
example, p. 127.

(Page 146) keytext: One contemporary source suggests that an 1892 work of
Arthur Hermann was the first to put this into definitive form. André Lange and
Émile-Arthur Soudart, Treatise on Cryptography (Washington, D.C.: US Government
Printing Office, 1940), pp. 31, 87.

(Page 146) “Dorothy lived in the midst . . . ”: L. Frank Baum, The Wonderful Wizard of

Oz (Chicago: George M. Hill, 1900), Chapter 1.
(Page 146) “A slow sort of country . . . ”: Lewis Carroll, Through the Looking-Glass,

and What Alice Found There (1871), Chapter 2.
(Page 148) “Mowgli was far and far through the forest . . . ”: Rudyard Kipling, The
Jungle Book (1894), Chapter 1.

(Page 148) too few messages: Remember that the more ciphertext you have, the better
letter frequency analysis works. This also applies to the brute force with “frequency
sums” technique from Section 2.6.

(Page 148) chi test and cross-product sum: To be exact, Friedman and Kullback used
the Greek letter chi to refer to the numerator of what I am calling the cross-product
sum. The chi test and cross-product sum, like the phi test, first appear in Solomon
Kullback, Statistical Methods in Cryptanalysis (Laguna Hills, CA: Aegean Park Press,
1976). The algebraic equivalence is shown in Friedman, Military Cryptanalysis.

Part III, pp. 66–67.
(Page 150) multiple ciphertexts with the same running-key: The plaintexts are taken
from the chapter titles of a famous book by Robert Louis Stevenson. Not all of them
start at the beginning of the title and some are parts of two titles run together.

(Page 152) just for variety: It’s not really just for variety. It also makes things work out
slightly more easily, but it’s not really important—the technique still works with
tabula recta; it just takes a little more trial and error.

(Page 152) ciphertext with keytext from a common book: The keytext and plaintext
are from Rudyard Kipling, Just So Stories (1902), Chapters 1 and 7.

(Page 153) probable words: If you happened to already know where I got my plaintext
from in this example, you would want to consider the words best and beloved.

(Page 154) Frank Miller: Steven M. Bellovin, “Frank Miller: Inventor of the one-time
pad,” Cryptologia 35:3 (2011). Miller’s system was similar to the German Foreign
Office system described on page 155, except without the modular arithmetic.

(Page 154) some disagreement: Kahn, The Codebreakers, pp. 397–401, tells the story
and holds that Mauborgne made the crucial decision. Steven M. Bellovin, “Vernam,
Mauborgne, and Friedman: The one-time pad and the index of coincidence,”
Department of Computer Science, Columbia University, May 2014, lays out the case
for both Vernam and Mauborgne and sides with Vernam.
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(Page 154) never be reused: One model of teletypewriter actually had a blade that
sliced the tape in half after reading it to make sure it couldn’t be reused. Kahn,
The Codebreakers, p. 433.

(Page 155) three cryptologists:Werner Kuze, Rudolf Schauffler, and Erich Langlotz.
Kahn, The Codebreakers, p. 402.

(Page 155) German diplomatic one-time pad: Kahn, The Codebreakers, p. 402–3.
(Page 155) one-time pad was unbreakable: Bellovin, “Vernam, Mauborgne, and
Friedman,” credits Friedman as the first to really understand why.

(Page 155) Shannon’s proof: Shannon, “Communication theory.” This is the same
famous paper in which he defined confusion and diffusion; see Sections 4.2 and 4.3.
Apparently Vladimir Kotelnikov also developed the theory of perfect security in
the Soviet Union in 1941, but his work is still classified. Natal’ya V. Kotel’nikova,
“Vladimir Aleksandrovich Kotel’nikov: The life’s journey of a scientist,”
Physics-Uspekhi 49:7 (2006); Vladimir N. Sachkov, “V. A. Kotel’nikov and encrypted
communications in our country,” Physics-Uspekhi 49:7 (2006); Sergei N. Molotkov,
“Quantum cryptography and V. A. Kotel’nikov’s one-time key and sampling
theorems,” Physics-Uspekhi 49:7 (2006).

(Page 156) how to exchange random key material: Unlike a running-key cipher, Alice
and Bob can’t just both pick up identical copies of the same book.

(Page 157) fall-back system: Kahn, The Codebreakers, p. 401.
(Page 157) red phone: Kahn, The Codebreakers, p. 715–16.
(Page 157) Soviet spy one-time pads: Kahn, The Codebreakers, p. 663–64.
(Page 157) Cardano: Cardano is better known to most mathematicians as one of the
first people to discover a general formula for solving cubic equations.

(Page 159) Treatise on Ciphers: Blaise de Vigenère, Traicté des Chiffres, ou Secrètes

Manières d’Escrire (Treatise on Ciphers, or Secret Methods of Writing) Paris: A.
L’Angelier, 1586.

(Page 159) “a worthless cracking of the brain”: Vigenère’s opinion of cryptanalysis
was that it was “un inestimable rompement de cerveau.” Vigenère, Traicté des
Chiffres, p. 12r.

(Page 159) extra step: Vigenère also presented the possibility that the ciphertext could
be altered again after adding the keystream.

(Page 160) “waste all your oil”: Another Vigenère comment on the practice of
cryptanalysis. Vigenère, Traicté des Chiffres, p. 198r, quoted in Mendelsohn, Blaise de
Vigenère and the “Chiffre Carré.”

(Page 161) 16 text characters: See Sidebar 4.1.
(Page 164) other repeating-key ciphers: You can see that the distinctions between
progressive ciphers, repeating-key ciphers, and key autokey ciphers are somewhat
fluid.

(Page 165) addition modulo 10: Remember that we can also think of this as
noncarrying addition.

(Page 165) Soviet World War II cipher: Alex Dettman et al., Russian Cryptology

During World War II. (Laguna Hills, CA: Aegean Park Press, 1999), p. 40. The
initialization vector and key that I used are the dates of the beginning and end of the
Battle of Stalingrad. The plaintext also refers to that battle.
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(Page 165) only 5 key digits: Plus the initialization vector, but the way we have set up
this system, Alice and Bob don’t even necessarily have to keep the initialization
vector secret. It should be different for every message, though. Ferguson, Schneier,
and Kohno, op. cit., p.69.

(Page 166) some experts suggest not using OFB: Ferguson et al., Cryptography
Engineering, p.71.

(Page 167) counter initialization vector requirements: Ferguson et al., Cryptography
Engineering, p.70.

(Page 167) useful for data files: Schneier, Applied Cryptography, p. 206.
(Page 168) “multiply like rabbits”: Fibonacci’s original presentation of the Fibonacci
sequence was in the context of a problem about rabbit reproduction.

(Page 168) Gromark cipher: Gromark stands for GROnsfeld with Mixed Alphabet and
Running Key. W. J. Hall, “The Gromark cipher (Part 1),” The Cryptogram 35:2 (1969).
The Gronsfeld cipher is just a name for variants of a tabula recta cipher using a key
of numbers instead of letters, such as we use here and in the key autokey cipher of
the previous section. Our version doesn’t actually use a mixed alphabet, and we are
making a distinction between a running key and an autokey cipher. So it might be
more accurate to call it a “Grotrak” cipher, or maybe a “Grolfak” cipher.

(Page 168) VIC cipher: David Kahn, “Two Soviet Spy Ciphers,” in Kahn on Codes (New
York: Macmillan, 1984).

(Page 169) linear equations: Note that the Hill cipher also uses linear equations; this
will become relevant when we talk about the cryptanalysis of LFSRs.

(Page 170) feedback: This also happens in plaintext feedback mode, ciphertext feedback
mode, and output feedback mode.

(Page 171) LSFRs in software: See, for example, Schneier, Applied Cryptography, p. 378
for more on this variation.

(Page 171) as far back as 1952:Maybe earlier; the AFSAY-816 voice-encryption device
from the late 1940s used “shift registers,” which were very likely LFSRs. Thomas R.
Johnson, American Cryptology during the Cold War, 1945–1989; Book I: The Struggle

for Centralization, 1945–1960 (Center for Cryptologic History, National Security
Agency, 1995), p. 220; David G. Boak, “A history of U.S. communications security”
(Volume I).National Security Agency, July 1973, p. 58.

(Page 171) KW-26:Melville Klein, Securing Record Communications: The TSEC/KW-26

(Center for Cryptologic History, National Security Agency, 2003).
(Page 173) decimal equivalent: Alice can’t necessarily convert her plaintext bits back
to characters using ASCII, because some of the numbers (such as 9) might not
represent printable characters.

(Page 173) modulo-2 LFSR with four cells and a period of 15: Can you find it?
(Page 173) LFSRs with maximum period: See, for example, Solomon Golomb, Shift
Register Sequences, Rrev. ed. (Laguna Hills, CA: Aegean Park Press, 1982),
Section III.3.5.

(Page 173) 2j pairs of plaintext and ciphertext bits: Note that 2j pairs is not a large
number compared to 2j − 1, the length of the period. In practice, j is likely to be less
than 100, but even 230 − 1 is already about 10 billion.

(Page 174) finding the initialization vector: Using these equations is not really the
quickest way to find the initialization vector, but it’s easy and it works.
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(Page 175) harder to analyze: See, e.g., Schneier, Applied Cryptography, p. 412.
(Page 175) options for adding nonlinearity: See Schneier, Applied Cryptography,
Section 16.4, for lots of examples of the last two options.

(Page 175) A5 ciphers: There at least three different A5 ciphers. A5/1 was intended for
use in the United States and Europe. A5/2 is a weaker version intended for markets
outside the Organization for Economic Co-operation and Development. Elad Barkan
and Eli Biham, “Conditional estimators: An effective attack on A5/1,” in Selected

Areas in Cryptography (Berlin/Heidelberg: Springer, 2006). A5/3 is an entirely
different cipher designed for 3G phones and does not use LFSRs. A5/4 seems to be
the same as A5/3 with a longer key.

(Page 175) disagreement among intelligence agencies: Ross Anderson, “A5 (Was:
HACKING DIGITAL PHONES),” Posted in uk.telecom (Usenet group), June 17,
1994, http:// groups.google.com/group/uk.telecom/msg/ba76615fef32ba32.

(Page 175) efficiency may have played a role: Ross Anderson, “On Fibonacci
Keystream Generators,” in Fast Software Encryption (Berlin/Heidelberg: Springer,
1995).

(Page 175) British university: Schneier, op. cit., p. 389.
(Page 175) almost-complete description posted: Anderson, “A5 (Was: HACKING

DIGITAL PHONES).”

(Page 175) complete design reverse-engineered, posted, and confirmed: See Alex
Biryukov, Adi Shamir, and David Wagner, “Real Time Cryptanalysis of A5/1 on a
PC,” in Fast Software Encryption (Berlin/Heidelberg: Springer, 2001), Abstract and
Introduction. The reverse-engineering was done by Marc Briceno, of the Smart Card
Developers Association.

(Page 176) A5/1 key setup: In actual GSM phones, the key setup is a little more
complicated, but that’s not really important for our purposes. See Barkan and
Biham, “Conditional estimators.”

(Page 176) each LFSR shifts 3/4 of the time: Assuming each combination of bits is
equally likely.

(Page 176) cuts down on the period:W. G. Chambers and S. J. Shepherd, “Mutually
clock-controlled cipher keystream generators,” Electronics Letters 33:12 (1997).

(Page 176) careful use:W. Chambers, “On random mappings and random
permutations,” in Fast Software Encryption (Berlin/Heidelberg: Springer, 1995).

(Page 177) as early as 1994: Anderson, “A5 (Was: HACKING DIGITAL PHONES).”

(Page 177) 1997 paper: Jovan Dj. Golic, “Cryptanalysis of alleged A5 stream cipher,” in
Advances in Cryptology—EUROCRYPT ’97, edited by Walter Fumy (Konstanz,
Germany: Springer-Verlag, 1997).

(Page 177) considerably refined: See Barkan and Biham, “Conditional estimators,” for
a summary of the various papers.

(Page 177) various logistical reasons: Audio data or file transfers would need to be
carefully synchronized; raw digital data collection requires access to the phone itself
or a computer connected to it, and soon.

(Page 177) 2006 correlation-type attack: Barkan and Biham, “Conditional estimators.”
(Page 178) 2003 precomputation attack: Elad Barkan, et al., “Instant ciphertext-only
cryptanalysis of GSM encrypted communication,” in Advances in Cryptology—

CRYPTO 2003 (Berlin/Heidelberg: Springer, 2003).

http://groups.google.com/group/uk.telecom/msg/ba76615fef32ba32
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(Page 178) project to create these tables: Chris Paget and Karsten Nohl, “GSM:
SRSLY?” Slides from lecture presented at 26th Chaos Communication Congress,
2009, http://events.ccc.de/congress/2009/Fahrplan/events/3654.en.html.

(Page 178) showed some partial successes: Frank A. Stevenson, “[A51] Cracks
beginning to show in A5/1. . . ,” Email sent to the A51 mailing list, May 1, 2010,
http://lists.lists.reflextor.com/pipermail/a51/2010-May/000605.html.

(Page 178) GSM Association: GSM Association, “GSMA statement on media reports
relating to the breaking of GSM encryption,” Press release, December 30, 2009,
http:// gsmworld.com/newsroom/press-releases/2009/4490.htm.

(Page 178) “process” A5/1: NSA, “GSM Classification Guide,” September 20, 2006,
https://s3.amazonaws.com/s3.documentcloud.org/documents/888710/gsm
-classification-guid-20-sept-2006.pdf.

(Page 178) generally taken: Craig Timberg and Ashkan Soltani, “By cracking
cellphone code, NSA has ability to decode private conversations,” The Washington

Post (December 13, 2013).
(Page 178) major wireless carriers: Ashkan Soltani and Craig Timberg, “T-Mobile
quietly hardens part of its U.S. cellular network against snooping,” The Washington

Post (October 22, 2014).
(Page 178) “identify new stream ciphers . . . ”: The ECRYPT Network of Excellence,
“Call for stream cipher primitives, version 1.3,” 2005, http://www.ecrypt.eu.org
/stream/call.

(Page 178) eSTREAM: For more on the eSTREAM project, see Matthew Robshaw and
Olivier Billet (eds.), New Stream Cipher Designs: The eSTREAM Finalists (Berlin,
New York: Springer, 2008) and the project’s Web site: “eSTREAM: the eSTREAM
stream cipher project.” http://www.ecrypt.eu.org/stream/index.html.

(Page 179) NIST-approved modes: NIST Computer Security Division, “Computer
Security Resource Center: Current modes.” http://csrc.nist.gov/groups/ST/toolkit
/BCM/current_modes.html.

(Page 179) authentication: Some of these authentication modes are designed for
specialized situations rather than messages in general. We will talk about a different
view of authentication in Section 8.4.

(Page 179) CBC-MAC: Computer Data Authentication, NIST, May 1985.
(Page 179) two different keys: If she uses the same key for CBC and CBC-MAC, then
the MAC is not secure. See, for example, Ferguson et al., Cryptography Engineering,
p. 91.

(Page 180) Trivium: For more on the design and specifications of Trivium, see
Christophe De Cannière and Bart Preneel, “Trivium,” in Matthew Robshaw and
Olivier Billet (eds.), New Stream Cipher Designs (Berlin, New York: Springer, 2008).

(Page 180) nonlinear operations: This is nonlinear because the keystream bits are
directly multiplied instead of being multiplied by constants and then added.

Chapter 6 Ciphers Involving Exponentiation

(Page 182) jamming the numbers together: If this doesn’t seem mathematical enough
to you, think of the number for a plaintext block as P = 100P1 + P2. But it doesn’t
really matter.
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(Page 184) Pierre de Fermat: Michael Mahoney, The Mathematical Career of Pierre de

Fermat (1601–1665) (Princeton NJ: Princeton University Press, 1973).
(Page 184) how you might have discovered it: Since Fermat didn’t have Gauss’ idea
of modular arithmetic and probably didn’t know much cryptology either, he
probably had something else in mind. But who knows? The first published proof was
apparently by Leonhard Euler in 1741. The proof given here is more or less the one
in James Ivory, “Demonstration of a theorem respecting prime numbers,” New Series

of The Mathematical Respository. Vol. I, Part II (1806).
(Page 185) cancel 1× 2× 3× · · · × 12: Or, if you prefer, multiply each side by
1× 2× 3× · · · × 12.

(Page 188) Pohlig-Hellman exponentiation cipher:M. E. Hellman and S. C. Pohlig,
“Exponentiation cryptographic apparatus and method,” United States Patent:
4424414, 1984, http://www.google.com/patents?vid=4424414.

(Page 188) invention of the Pohlig-Hellman cipher: Although first written in 1976,
the paper describing the cipher wasn’t published until 1978, by which time the ideas
contained in it were well known in the cryptographic community. S. Pohlig and M.
Hellman, “An improved algorithm for computing logarithms over GF(p) and its
cryptographic significance (corresp.),” IEEE Transactions on Information Theory 24
(1978). For the story of the delay, see Martin Hellman, “Oral history interview by
Jeffrey R. Yost,” Number OH 375. Charles Babbage Institute, University of
Minnesota, Minneapolis, 2004, pp. 43–44, http://purl.umn.edu/107353. Both
Pohlig and Hellman are now better known for other ideas related to public-key
cryptography. Hellman is best known for his part in the Diffie-Hellman key
agreement system, which we see in Section 7.2. Pohlig is best known for his part
in the Silver-Pohlig-Hellman algorithm for computing discrete logarithms (see
Section 6.4). That algorithm was first published by Pohlig and Hellman in the same
paper as their exponentiation cipher, although according to that paper it had been
independently discovered by Roland Silver. Pohlig and Hellman, “Improved
algorithm.”

(Page 189) Alice needs only 46 multiplications: In fact, we could do even better if we
convert 769 to a binary numeral, but this is good enough to get the idea.

(Page 189) Eve will need all 768 multiplications: Actually, with the best-known
techniques, Eve can go somewhat faster than this, but still not nearly as fast as Alice
and Bob can.

(Page 189) 35 years on the discrete logarithm problem:Much more if you count
precomputer investigations. Gauss, for example, made tables of discrete logarithms,
which he called “indices.” Gauss, Disquisitiones arithmeticae, Articles 57–59.

(Page 189) no one knows for sure: Actually, it is possible that someone knows and
isn’t telling. If so, the NSA would be most likely, but it could be another government
or even some other organization. The same thing goes for the Diffie-Hellman
problem that we see in Section 7.2, the factoring problem from Section 7.4, and the
RSA Problem from Section 7.6.

(Page 190) composite numbers: As I implied in Section 1.3, every positive whole
number can be written as the product of primes. Therefore, every positive whole
number other than 1 is either prime or composite. Mathematicians consider 1 to be
neither prime nor composite.

http://www.google.com/patents?vid=4424414
http://purl.umn.edu/107353
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(Page 190) “Decomposing Composers”:Monty Python, “Decomposing composers,”
Monty Python’s Contractual Obligation Album. Charisma Records, 1980.

(Page 193) Fermat was in the seventeenth: For the kind of mathematics in this
chapter, anyway.

(Page 193) Euler’s 1763 paper: Leonhard Euler, “Theoremata Arithmetica Nova
Methodo Demonstrata,” Novi Commentarii Academiae Scientiarum Petropolitanae 8
(1763).

(Page 193) function we now write φ(n): This notation seems to have been introduced
later by Gauss. Gauss, Disquisitiones arithmeticae, Article 38.

(Page 193) Euler phi function: Not to be confused with Friedman’s phi from
Section 2.2.

(Page 194) we have to add it back in: This taking-out and adding-back-in procedure is
often known as the principle of inclusion-exclusion.

(Page 196) find the inverse: If Alice made a mistake and picked a bad key, Bob will
find that out in this step.

(Page 197) decryption does always work properly:Most books prove only the case
of two distinct primes, because that is what is needed for RSA. (See Section 7.4.)
However, the proof in S. C. Coutinho, The Mathematics of Ciphers (Natick, MA: AK
Peters, Ltd., 1998), pp. 166–67 (Section 11.3) or Robert Edward Lewand, Cryptological
Mathematics (The Mathematical Association of America, 2000), pp. 156–57
(Theorem 4.1) is very readable and generalizes easily to more primes. The proof
in Thomas H. Barr, Invitation to Cryptology (Englewood Cliffs, NJ: Prentice Hall,
2001), pp. 280–81 (Theorem 4.3.2) is also readable but does not generalize quite as
easily.

(Page 199) works anyway: It turns out that if a prime does divide both P and n, it has
to divide P at least as many times as it divides n. Once again, I’m not going to try to
prove it, but the references I gave in the endnote for page 197 might be useful.

(Page 199) Pohlig and Hellman considered composite moduli: Hellman, Oral History
Interview by Jeffrey R. Yost, pp. 43–44.

Chapter 7 Public-Key Ciphers

(Page 201) agree on the key: And possibly the system, depending on how seriously
they are taking Kerckhoffs’ principle.

(Page 201) “simple, but inefficient”: Arnd Weber (ed.), “Secure communications over
insecure channels (1974)” (January 16, 2002), http://www.itas.kit.edu/pub/m/2002
/mewe02a.htm.

(Page 202) project proposal:Merkle’s original project proposal is posted at “CS 244
project proposal” (Fall 1974), http://merkle.com/1974/CS244ProjectProposal.pdf.

(Page 202)Merkle’s computer security class: Levy, Crypto, pp. 77–79.
(Page 202) several versions:Weber (ed.), “Secure communications.”
(Page 202) version that was finally published: Ralph Merkle, “Secure communications
over insecure channels,” Communications of the Association for Computing

Machinery 21:4 (1978). This version was published after three and a half years and
much arguing with reviewers. Weber (ed.), “Secure communications”; Levy, Crypto,
p. 81.
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(Page 202) “tedious, but quite possible”:Merkle, “Secure communications over
insecure channels,” p. 296.

(Page 202) cipher with a 128-bit key: In particular, he suggested a version of Lucifer
which Horst Feistel had published in 1973. (Feistel, “Cryptography and computer
privacy.”) A modern implementation might use AES.

(Page 203) check number: The check number is hardly necessary in our example, since
all of the numbers are spelled out and it should be obvious to Bob when he solves the
puzzle. However, if the numbers were encrypted in some other fashion, it might not
be possible to tell for sure without the check number.

(Page 205) 250 decryptions: This is not strictly true in our example, since there are
much faster known-plaintext attacks that Eve could try on each puzzle instead.
This is why Merkle suggested using a cipher with much stronger resistance to
known-plaintext attacks and a large block size, but restricting the set of keys. I could
have done that here, but it would have made the example much more complicated.

(Page 206) key-agreement system: Often this is called a key-exchange system, but
that’s not really accurate. The things that are exchanged can’t be used as secret keys,
but in the end Alice and Bob do agree on a secret key.

(Page 206)Merkle recognized: Levy, Crypto, pp. 82–83.
(Page 206) one of them has to spend twice as long: Or each of them has to spend
roughly 1.4 times as long.

(Page 207) Diffie’s story: Levy, Crypto, pp. 20–31.
(Page 207) “two problems and a misunderstanding”:Whitfield Diffie, “The first ten
years of public-key cryptography,” Proceedings of the IEEE 76:5 (1988).

(Page 207) “digital signatures”:Merkle also considered this question, but without
much success. Merkle, CS 244 Project Proposal.

(Page 207) “What good would it do . . . .”: Diffie, “The first ten years of public-key
cryptography,” p. 560.

(Page 207) three people: And at least one more, as we see in Appendix A.
(Page 208) privacy and self-reliance on the minds of Diffie and Hellman:
Levy, Crypto, for example, p. 34.

(Page 208) Diffie and Hellman’s paper:Whitfield Diffie and Martin E. Hellman,
“Multiuser cryptographic techniques,” in Stanley Winkler (ed.), Proceedings of the
June 7–10, 1976, National Computer Conference and Exposition (New York: ACM,
1976).

(Page 208) draft copy: Levy, Crypto, p. 81–82. Back before the Internet, it was
customary for scientists in many fields to send copies of papers that had not yet been
published to colleagues who might be interested. This was especially important in
fast-moving fields like computer science, where a paper might become obsolete
between the time it was written and was published. Today, these drafts are often
posted on a Web site.

(Page 208) Diffie, Hellman, and Merkle: Levy, Crypto, pp. 76–83.
(Page 208) one-way functions: Diffie thinking about: Levy, Crypto, p. 28; Merkle
thinking about: Ralph Merkle, “CS 244 project proposal” Fall 1974).

(Page 208) Diffie-Hellman key agreement: Levy, Crypto, p. 84.
(Page 209) “We stand today . . . ”:Whitfield Diffie and Martin E. Hellman, “New
directions in cryptography,” IEEE Transactions on Information Theory 22:6 (1976).
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(Page 209) large prime number: The Diffie-Hellman system, like the Pohlig-Hellman
cipher, can also be done using finite field arithmetic modulo 2. Alice’s and Bob’s
computations become quicker on a computer, but so do Eve’s, so there isn’t a lot of
practical advantage in the end. Schneier, Applied Cryptography, p. 515.

(Page 209) 600 digits or more: That is, 2048 bits. David Adrian et al., “Imperfect
forward secrecy: How Diffie-Hellman fails in practice,” in 22nd ACM Conference on

Computer and Communications Security, Association for Computing Machinery
Special Interest Group on Security, Audit and Control (New York: ACM Press, 2015).

(Page 209) generator modulo p: Sometimes you will also see this called a primitive
root modulo p.

(Page 209) every prime has a generator: First proved, once again, by Gauss. Gauss,
Disquisitiones arithmeticae, Articles 54–55.

(Page 209) fine to look them up: But see Section 7.8 for an important caveat to this.
(Page 211) p = 2819: Of course, this isn’t nearly large enough for real-life security. But
this is just an illustration.

(Page 211) 94 and 305: 94305 is the Stanford zip code.
(Page 213) discrete logarithm modulo 232-digit prime: Thorsten Kleinjung, “Discrete
Logarithms in GF(p)—768 bits,” Email sent to the NMBRTHRY mailing list, 2016,
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;a0c66b63.1606.

(Page 213) discrete logarithm record: Larger computations have been done over finite
fields. The record as of this writing is a computation over a field with 29234 elements.
The size of this field is a 2779-digit, or 9234-bit, number. Jens Zumbrägel, “Discrete
logarithms in GF(2^9234),” E-mail sent to the NMBRTHRY mailing list, 2014,
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;9aa2b043.1401.

(Page 213) Diffie-Hellman in VPNs and IPv6: The security system used by these
networks is known as Internet Protocol Security, or IPsec. William Stallings,
Cryptography and Network Security: Principles and Practice, 6th ed. (Boston:
Pearson, 2014), Section 20.1. The cryptographic system used in IPsec is based on
Diffie-Hellman, with additions to provide added security and authentication.
Stallings, Cryptology and Security, Section 20.5.

(Page 213) very difficult to find the decryption key from the encryption key: Often
the reverse is also true, but it will not be a requirement for the systems in this
chapter.

(Page 214) Diffie and Hellman’s analogy: Diffie and Hellman, “New directions in
cryptography,” p. 652.

(Page 216) 1976 paper: Diffie and Hellman, “Multiuser cryptographic techniques.”
(Page 216) knapsack ciphers: Simson Garfinkel, PGP: Pretty Good Privacy (Sebastopol,
CA: O’Reilly Media, 1995), pp. 79–82

(Page 216) Rivest and Shamir excited; Adleman less so: Levy, Crypto, pp. 92–95.
(Page 216) Settled into a pattern: Levy, Crypto, pp. 95–97.
(Page 217) factoring as a one-way function: Diffie and Hellman also briefly
considered using factoring for their one-way function but didn’t pursue it.
Levy, Crypto, p. 83.

(Page 217) Passover seder: Levy, Crypto, p. 98.
(Page 217) lay down on the couch: According to one source this was a common
practice when he was thinking about something. Levy, Crypto, p. 98. Other sources

https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;a0c66b63.1606
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;9aa2b043.1401
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say that he lay down because he had a headache. Garfinkel, PGP, p. 74; Jim Gillogly
and Paul Syverson, “Notes on Crypto ’95 invited talks by Morris and Shamir,”
Cipher: Electronic Newsletter of the Technical Committe on Security & Privacy, A

Technical Committee of the Computer Society of the IEEE. Electronic issue 9 (1995).
It is not clear whether the wine was involved.

(Page 217) exponentiation cipher: There is no evidence that Rivest had actually seen
Pohlig and Hellman’s work on the exponentiation cipher at this point. He may very
well have independently reinvented it.

(Page 217) 600 digits for n: Again, 2048 bits. Benjamin Beurdouche et al., “A messy
state of the union: Taming the composite state machines of TLS,” in 2015 IEEE

Symposium on Security and Privacy (SP), (Los Alamitos, CA: IEEE Computer
Society, 2015).

(Page 217) e = 17: In fact, e = 17 is a fairly common choice even in the real world. It’s
small enough so that encryption is fast, but not so small that Eve can usually take
advantage of it. It’s prime, so the GCD of 17 and φ(n) is usually 1. And it’s of the
special form 17 = 24 + 1, which makes it easy to do exponentiation using the most
common computer technique.

(Page 218) “Just the factors, ma’am”: See Barbara Mikkelson and David Mikkelson,
“Just the facts,” snopes.com, 2008, http://www.snopes.com/radiotv/tv/dragnet.asp.

(Page 219) the morning of April 4 and the order of authors: Levy, Crypto, pp. 100–1.
(Page 219) RSA Technical Memo: Ronald L. Rivest, et al., “A method for obtaining
digital signatures and public-key cryptosystems,” technical Memo number
MIT-LCS-TM-082, MIT, April 4, 1977.

(Page 219) paper describing RSA: R. L. Rivest, et al., “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the Association for

Computing Machinery 21:2 (1978).
(Page 219) RSA patent: Ronald L. Rivest et al., “Cryptographic communications system
and method,” United States patent: 4405829, 1983, http://www.google.com
/patents?vid=4405829.

(Page 220)Martin Gardner’s column:Martin Gardner, “Mathematical games: A new
kind of cipher that would take millions of years to break,” Scientific American 237:2
(1977).

(Page 220) 40 quadrillion years: This estimate appears to have been a mistake; Rivest
should have said that it would take 40 quadrillion operations. Garfinkel, PGP, p. 115.
Levy, Crypto, p. 104, says it should have been “hundreds of millions of years”; my
rough calculation gives 22,500 years based on Rivest, Shamir and Adleman,
Communications of the Association for Computing Machinery. Your mileage may
vary.

(Page 220) over 3000 requests: Garfinkel, PGP, p. 78.
(Page 220) RSA in secure web servers: Stallings, Cryptology and Security, Section 17.2.
(Page 221) hybrid systems in web servers: Stallings, Cryptology and Security,
Section 17.2.

(Page 222) tests have been known: See, for example, Leonard Eugene Dickson,
Divisibility and Primality, reprint of 1919 edition (Providence, RI: AMS Chelsea
Publishing, 1966), p. 426.

http://www.snopes.com/radiotv/tv/dragnet.asp
http://www.google.com/patents?vid=4405829
http://www.google.com/patents?vid=4405829
http://www.snopes.com
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(Page 222) “The problem of distinguishing . . . ”: Gauss, Disquisitiones arithmeticae,
Article 329.

(Page 223) “the second is superior . . . ”: Gauss, Disquisitiones arithmeticae, Article 334.
(Page 223) first pointed out: R. Solovay and V. Strassen, “A fast Monte-Carlo test for
primality,” SIAM Journal on Computing 6:1 (1977); the paper was first received by
the journal editors on June 12, 1974.

(Page 223) probabilistic test: Technically, a probabilistic procedure that is always fast
but sometime wrong is called aMonte Carlo algorithm, whereas one that is always
right but sometimes slow is called a Las Vegas algorithm. The Solovay-Strassen test
is a Monte Carlo algorithm.

(Page 223) liars and witnesses: The standard terminology is for liar and witness to be
opposites, even though lying witness and truthful witness might be more accurate.
Notice that 1 is always going to be a liar for the Fermat test on a composite number.
Can you see why?

(Page 225) Rabin paper:Michael O. Rabin, “Probabilistic algorithm for testing
primality,” Journal of Number Theory 12:1 (1980).

(Page 225)Miller paper: Gary L. Miller, “Riemann’s hypothesis and tests for
primality,” in Proceedings of Seventh Annual ACM Symposium on Theory of

Computing, Association for Computing Machinery Special Interest Group on
Algorithms and Computation Theory (New York: ACM, 1975).

(Page 225) Rabin-Miller test: The Rabin-Miller test is actually not too hard to explain,
but it would take us rather far off track. If you would like to check it out, Joseph H.
Silverman, A Friendly Introduction to Number Theory, 3d ed. (Englewood Cliffs, NJ:
Prentice Hall, 2005), pp. 130–31, has a succinct and readable description.
Coutinho, Mathematics of Ciphers, pp. 100–4 (Sections 6.3–6.4) gives a few more
details.

(Page 225) Agrawal-Kayal-Saxena primality test: The version that was finally
published was Manindra Agrawal et al., “PRIMES is in P,” The Annals of
Mathematics 160:2 (2004). F. Bornemann, “PRIMES is in P: A breakthrough for
‘everyman,’ ” Notices of the AMS 50:5 (2003) tells the story nicely, and you can
ignore as much of the math as you want. (It’s written for mathematicians who are
not experts in the subject.) This discovery was taken as great encouragement by
many young students! Kayal and Saxena had started their work as undergraduates
and made their breakthrough during the first summer after graduation.

(Page 225) creating a secure RSA key: In practice, the most time-consuming part of
the process should be generating unguessable random numbers to test for primality.
Depending on how good a job your computer does of this, it could take up to a
minute.

(Page 227) factoring better than the obvious method: For a good description of
modern factoring techniques, see Carl Pomerance, “A tale of two sieves,” Notices of
the American Mathematical Society 43:12 (1996). There have been some
improvements since that article was written, but the basic ideas there are still the
state of the art 2016.

(Page 227) 129-digit challenge solved: Garfinkel, PGP, p. 113–15; Derek Atkins et al.,
“The magic words are Squeamish Ossifrage,” in Josef Pieprzyk and Reihanah
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Safavi-Naini (eds.) Advances in Cryptology—ASIACRYPT ’94. (Berlin/Heidelberg:
Springer-Verlag, 1995).

(Page 228) 232-digit factorization: Thorsten, Kleinjung Kazumaro Aoki, Jens Franke,
Arjen Lenstra, Emmanuel Thomé, Joppe Bos, Pierrick Gaudry, et al., “Factorization
of a 768-bit RSA modulus,” cryptology ePrint Archive number 2010/006, 2010. Larger
numbers have been factored but only if they have a special form.

(Page 228) factoring n using a multiple of φ(n): This algorithm is closely related to
the Rabin-Miller primality test from Section 7.5. An early version of this algorithm is
in Miller, “Riemann’s hypothesis,” but it relies on a widely believed but unproven
conjecture. I don’t know who came up with the modern version but you can find a
description in Alfred J. Menezes et al., Handbook of Applied Cryptography (Boca
Raton, FL: CRC, 1996), p. 287 (Section 8.2.2).

(Page 230) chosen-ciphertext attack on RSA: This also applies to the Pohlig-Hellman
exponentiation cipher, by the way.

(Page 230) Eve knows 243 and 3125: She knows the other plaintext blocks too, since
she encrypted them properly, but they aren’t likely to help her.

(Page 231) don’t choose d too small: You might wish you could do this in order to
make decryption fast, the same way many people choose a small e in order to make
encryption fast (see Section 7.4).

(Page 232) 22146 × 2019−1 modulo 3763: Here 2019−1 is the same as the multiplicative
inverse of 2019 modulo 3763.

(Page 233) more details of attacks on RSA: Schneier, Applied Cryptography,
pp. 471–74 has a slightly more extensive summary with a few more attacks; some
of them involve digital signatures. (See Section 8.4.) Dan Boneh, “Twenty years of
attacks on the RSA cryptosystem,” Notices of the AMS 46:2 (1999) has more details
on many of the attacks.

(Page 233) Diffie-Hellman-Merkle:M. E. Hellman, “An overview of public key
cryptography,” IEEE Communications Magazine 40:5 (2002). The older terminology is
probably too entrenched to be changed, however.

(Page 233) patent:Martin E. Hellman et al., “Cryptographic apparatus and method,”
United States Patent: 4200770, 1980, http://www.google.com/patents?vid=4200770.

(Page 233) several internal NSA documents: See Spiegel Staff, “Prying Eyes, Inside the
NSA’s war on Internet security,” Spiegel Online (2014). and especially OTP VPN
Exploitation Team, “Intro to the VPN exploitation process,”
http://www.spiegel.de/media/media-35515.pdf.

(Page 233) “Logjam”: For the name, see David Adrian et al., “The logjam attack,”
(May 20, 2015). https://weakdh.org/. For the technical description and the detailed
rationale for believing that the NSA is using it, see Adrian et al. Imperfect Forward

Secrecy.
(Page 234) 225 digits:More accurately, 768 bits.
(Page 234) 150 digits:More accurately, 512 bits.
(Page 234) “FREAK”: “Export” refers to the fact that small keys used to be required in
software exported outside the United States. For more on the name, see Karthikeyan
Bhargavan et al., “State Machine AttaCKs against TLS (SMACK TLS),” https://www
.smacktls.com. For the technical description, see Beurdouche et al., Messy State of the

Union.
(Page 235) Ellis’ story: Levy, Crypto, pp. 313–19.

http://www.google.com/patents?vid=4200770
http://www.spiegel.de/media/media-35515.pdf
https://weakdh.org/
https://www.smacktls.com
https://www.smacktls.com
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(Page 236)Wasn’t practical itself: J. H. Ellis, “The history of non-secret encryption,”
Cryptologia 23:3 (1999).

(Page 236) “It shows only . . . ”: J. H. Ellis, “The possibility of secure non-secret digital
encryption,” UK Communications Electronics Security Group, January 1970.

(Page 236) codebook: Actually, Ellis was thinking not so much of a codebook as a block
cipher taking, say, 100 bits of plaintext to 100 bits of ciphertext. Evidently his idea of
a secure block size was similar to Feistel’s. Such a block cipher is less vulnerable to
frequency analysis, but I think a codebook is easier to visualize.

(Page 237) Alice starts by asking Bob: Remember that in the system that inspired Ellis,
the recipient is responsible for the encryption.

(Page 238) Some “process” could be found: Ellis, “Possibility”.
(Page 238) “Because of the weakness . . . : Ellis, “History,” p. 271.
(Page 238) And this is how things stood: Levy, Crypto, pp. 318–19.
(Page 238) Cocks’ story: Levy, Crypto, pp. 319–22.
(Page 238) exactly the kind of mathematics: Number theory, the study of whole
numbers and their properties.

(Page 238) “I suppose it was actually also helpful . . . ”: Levy, Crypto, p. 320.
(Page 238) all essential ways: One small difference was that Cocks, like Ellis, was still
thinking about a system which started with Alice asking Bob for his public key.
However, he did point out that once Alice had Bob’s public key she could encrypt as
many messages as she wanted using it.

(Page 239) Cocks’ paper: C. C. Cocks, “A Note on non-secret encryption,” UK
Communications Electronics Security Group, November 20, 1973.

(Page 239)Williamson’s story: Levy, Crypto, pp. 322-25. Williamson also lived in the
same house as Cocks, but conversations about work, like writing about work, were
forbidden while off of GCHQ grounds.

(Page 239)Williamson’s first paper:M. J. Williamson, “Non-secret encryption using a
finite field,” UK Communications Electronics Security Group, January 21, 1974.

(Page 239)Williamson’s second paper:Malcolm Williamson, “Thoughts on cheaper
non-secret encryption,” UK Communications Electronics Security Group, August 10,
1976.

(Page 240) The fate of public-key encryption at GCHQ: Levy, Crypto, pp. 324–29.
(Page 240) “no further benefit . . . ”: Ellis, “History.”
(Page 240) GCHQ posted five papers: According to Williamson, the papers couldn’t be
made public “until a certain person retired.” Levy, Crypto, p. 329.

Chapter 8 Other Public-Key Systems

(Page 246) “Tell me three times”: See Lewis Carroll, The Hunting of the Snark: An
Agony in Eight Fits (London: Macmillan, 1876), Fit the First.

(Page 247) Problems are about equally difficult: There are a couple of catches: the
three-pass protocol has more restrictions because the exponentiations have to be
invertible, and you need to decide what happens if the case you are trying to solve
doesn’t have a valid solution. For those who know a little about the subject, the
mathematical details are worked out in K. Sakurai and H. Shizuya, “A structural
comparison of the computational difficulty of breaking discrete log cryptosystems,”
Journal of Cryptology 11:1 (1998).

Notes to Chapters 7–8
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(Page 247) Technical report on mental poker: Adi Shamir et al., “Mental poker,” MIT,
February 1, 1979.

(Page 247) Collection dedicated to Martin Gardner: A. Shamir et al., “Mental poker,”
in David A. Klarner (ed.), The Mathematical Gardner (Boston: Prindle, Weber &
Schmidt; Belmont, CA: Wadsworth International, 1981). This is a very readable
article intended for nonexperts. The three-pass protocol also appeared in Konheim,
Cryptography, pp. 345–46, where it is described as “unpublished work” of Shamir’s.

(Page 247) Three-pass protocol reinvented by Omura: J. L. Massey, “An introduction
to contemporary cryptology,” Proceedings of the IEEE 76:5 (1988).

(Page 247)Major European conference: J. Massey, “A new multiplicative algorithm
over finite fields and its applicability in public-key cryptography,” Presentation at
EUROCRYPT ’83 March 21–25, 1983.

(Page 247)Massey and Omura’s patent: James L. Massey and Jimmy K. Omura,
“Method and apparatus for maintaining the privacy of digital messages conveyed by
public transmission,” United States Patent: 4567600 January 28, 1986, http://www
.google.com/patents?vid=4567600.

(Page 248) Elgamal came up with an asymmetric-key system: Taher ElGamal, “A
public key cryptosystem and a signature scheme based on discrete logarithms,” In
George Robert Blakley and David Chaum (eds.), Advances in Cryptology:

Proceedings of CRYPTO ’84 (Santa Barbara, CA: Springer-Verlag, 1985).
(Page 248) Elgamal and ElGamal:While the spelling “ElGamal” was used for the
original papers and has become standard for this and other cryptographic systems,
Taher Elgamal himself now prefers a lowercase g.

(Page 248) using one that someone else is using: But see the caveat in Section 7.8.
(Page 248) p = 2819: Just a reminder that in real life, p would be much larger than this.
(Page 248) blind and hint: This idea isn’t entirely original to Elgamal. In fact, in a sense
the idea of a random blind is the same idea as the one-time pad. The idea of sending
a cryptographic hint with the blinded ciphertext seems to have originated in the
early 1980s. Ronald L. Rivest and Alan T. Sherman, “Randomized Encryption
Techniques,” in David Chaum, Ronald L. Rivest, and Alan T. Sherman (eds.),
Advances in Cryptology: Proceedings of CRYPTO ’82 (New York: Plenum Press, 1983)
is a nice summary of the early history of probabilistic encryption, including blind
and hint systems and the McEliece public-key system. The McEliece system uses a
random blind but not a hint; instead it uses an error-correcting code to remove the
blind. Rivest and Sherman attribute blind and hint systems similar to the ElGamal
system to C. A. Asmuth and G. R. Blakley, “An efficient algorithm for constructing a
cryptosystem which is harder to break than two other cryptosystems,” Computers &

Mathematics with Applications 7:6 (1981), where they use a related idea to construct
the “join” of two encryption systems. As far as I know, however, Elgamal was the
first to incorporate this into a public-key system.

(Page 250) multiplicative cipher: Elgamal pointed out that you could use other
operations besides multiplication, but multiplication is convenient because we need
to do it as part of the exponentiation anyway and it’s reasonably fast compared to
the exponentiation. ElGamal, “Public key cryptosystem”.

(Page 251) public-key options in PGP and GPG: PGP: Jon Callas et al., “OpenPGP
Message Format,” IETF, November 2007; GPG: People of the GnuPG Project,

http://www.google.com/patents?vid=4567600
http://www.google.com/patents?vid=4567600
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“GnuPG frequently asked questions,” https://gnupg.org/faq/gnupg-faq.html. These
are e-mail programs for which key agreement is not particularly well suited. Thus
Diffie-Hellman is not a standard option, although ElGamal encryption is sometimes
called “Diffie-Hellman encryption” in these programs. The PGP standard lists Diffie-
Hellman as an option that “would be useful to use in an OpenPGP implementation,
yet there are issues that prevent an implementer from actually implementing the
algorithm.”

(Page 251) elliptic curve equations: There is actually a more general form of the
equation needed in some contexts, but this will do for our purposes.

(Page 258) commutative, associative, identity, inverses: The technical term for a set
of objects with an operation that is associative and has an identity and inverses is a
group. If it is also commutative, it is an abelian group. Numbers with addition,
nonzero numbers with multiplication, numbers modulo n with addition, numbers
relatively prime to n modulo n with multiplication, and elliptic curves are all
examples of abelian groups. Permutations of length n with permutation products
are also a group, but not abelian.

(Page 259) need to find the inverse and can’t: Since the modulus is prime, the only
numbers that don’t have inverses are those that are the same as zero modulo that
prime.

(Page 259) elliptic curves modulo p: It’s also possible, and sometimes convenient, to
consider elliptic curves where the coefficients and coordinates are elements of a
finite field. The formulas are almost the same in that case, but not quite. We won’t be
worrying about it too much.

(Page 260) modular exponentiation and elliptic curve discrete logarithm problems
are hard: And the factoring problem, but the factoring problem doesn’t seem to have
a good analog for elliptic curves.

(Page 260) Neil Koblitz tells the story: Neal Koblitz, Random Curves: Journeys of a

Mathematician (Berlin/Heidelberg Springer-Verlag, 2008), pp. 298–310.
(Page 260) Koblitz in the Soviet Union: As a side note, Koblitz recalls that the first
lecture that he ever gave on cryptography was in Moscow. He didn’t talk about
elliptic curve cryptography, but he did mention an application of public-key
cryptography to nuclear test ban treaty verification.

(Page 261)Miller’s paper: V. Miller, “Use of elliptic curves in cryptography,” in
Hugh C. Williams (ed.), Advances in Cryptology–CRYPTO ’85 Proceedings (Berlin:
Springer, 1986).

(Page 261) “only” about 70 digits long: That is, 224 to 255 bits; Elaine Barker et al.,
“Recommendation for key management—Part 1: General (Revision 3),” NIST, July
2012.

(Page 261) looked up in a table: The caveat in Section 7.8 may not apply here, since
the precomputation technique mentioned there does not work on the elliptic curve
discrete logarithm problem. See Section 8.5 for a different caveat, however.

(Page 261) secret a and b: It’s convenient if these are less than the number of points
generated by G but not vitally necessary.

(Page 261) piece of secret information: Note that this piece of shared secret
information is actually a point, with an x- and a y-coordinate. It’s most common to
just use the x-coordinate, so you get a number modulo p.

https://gnupg.org/faq/gnupg-faq.html
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(Page 261) elliptic curve discrete logarithm record: Joppe W. Bos et al., “Pollard rho
on the PlayStation 3,” in SHARCS ’09 Workshop Record, Virtual Application and
Implementation Research Lab within ECRYPT II European Network of Excellence in
Cryptography Lausanne, Switzerland: 2009. The record for finite fields is a
computation over a field with 2113 elements. The size of this field is a 113-bit
number. Erich Wenger and Paul Wolfger, “Harder, better, faster, stronger: elliptic
curve discrete logarithm computations on FPGAs,” Journal of Cryptographic
Engineering (September 3, 2015).

(Page 262) Koblitz’ paper: Neal Koblitz, “Elliptic curve cryptosystems,” Mathematics of

Computation 48:177 (1987).
(Page 262) elliptic curve ElGamal encryption: You do have to find a way to represent
your plaintext as a point on the elliptic curve, which is not completely trivial. Koblitz
gives some ideas in Koblitz, “Elliptic curve cryptosystems,” Section 3.

(Page 264) look up f: But see Section 8.5.
(Page 264) Fast techniques to compute f: Koblitz, “Elliptic curve cryptosystems” has
more on this.

(Page 265) message encrypted using that key: Or a MAC calculated using that key.
(Page 265) “a time and message dependent . . . ”: Diffie and Hellman, “Multiuser
cryptographic techniques.”

(Page 265) need a couple of assumptions: These are much less likely to be true with a
probabilistic encryption system.

(Page 266) “everywhere a sign”: Five Man Electrical Band, “Signs,” Single. Lionel
Records, 1971.

(Page 267) genuine message: The chance of Frank the forger being able to concoct
a signature that gives a sensible English message when verified with v, without
knowing σ , is extremely small. If the message is something other than text, this is
one of those cases where Alice might want to send an unsigned copy of the message
so Bob can compare.

(Page 268) Alice signs and the encrypts: There is some debate over whether one
should sign first and then encrypt, as we have done here, or encrypt first and then
sign. There are good arguments both ways. I choose to go with the “Horton
principle”: mean what you sign and sign what you mean—not just an encrypted
version of what you mean. Ferguson et al., Cryptography Engineering, pp. 96–97 and
102–4; Dr. Seuss, Horton Hatches the Egg (Random House, 1940).

(Page 268) certificates: See Simson Garfinkel,Web Security, Privacy and Commerce,
2nd ed. (Sebastopol, CA: O’Reilly Media, 2002), pp. 160–93 for more on certificates
and how they are used on the Internet.

(Page 268) RSA digital signature certificates: A 2013 scan of the Internet showed more
than 99% of certificates were signed using RSA. Zakir Durumeric et al., “Analysis of
the HTTPS certificate ecosystem,” in Proceedings of the 2013 Conference on Internet

Measurement Conference, Association for Computing Machinery Special Interest
Groups on Data Communication and on Measurement and Evaluation (New York:
ACM, 2013).

(Page 268) RSA Data Security and Netscape: Garfinkel,Web Security, pp. 175–76.
(Page 268) VeriSign and Symantec: The same 2013 scan showed that approximately
34% of certificates were issued by companies owned by Symantec. Approximately
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10% of the total were issued by VeriSign itself. Durumeric et al., “Analysis of the
HTTPS certificate ecosystem.”

(Page 268) Internet Explorer, Firefox, Chrome, and Safari: To be exact, as of 2015
Internet Explorer and Firefox support RSA, Digital Signature Algorithm, and the
Elliptic Curve Digital Signature Algorithm (ECDSA). Chrome and Safari seem to
have skipped DSA and support only RSA and ECDSA. Qualys SSL Labs, “User agent
capabilities,” 2015. https://www.ssllabs.com/ssltest/clients.html. This Web site also
gives you an option to test which algorithms your own browser supports.

(Page 269) Bob may not see anything wrong: If Alice and Bob are computers, then it
is particularly likely that Bob won’t see a problem. In that case the second sample
message is a lot more likely than the first.

(Page 269) synchronized clocks: See Ferguson et al., Cryptography Engineering,
Chapter 16, for lots more about the use and abuse of clocks in cryptography.

(Page 270) short signatures: This is often accomplished with the aid of a hash
function, or message digest function. These functions are easy for anyone to
compute without a key and take a message of arbitrary length to a value of fixed
size, such as 512 bits. However, it should be hard to find a message with a given hash
value or two messages with the same hash value. Hash functions are really beyond
the scope of this book, but Barr, Invitation to Cryptology, Section 3.6 is a good
introduction. Stallings, Cryptology and Security, Chapter 11 goes into more depth. It
is also more up-to-date, including a section about the AES-style competition NIST
recently held to choose a new hash function standard and its result. Ferguson et al.,
Cryptography Engineering, Chapter 5, has somewhat less detail about how hash
functions work and more about how to use them.

(Page 270) ElGamal signature scheme: ElGamal, “Public key cryptosystem.”
(Page 270) DSA was controversial: See Schneier, Applied Cryptography, Section 20.1
for early reactions to the DSA.

(Page 271) Sony was using the same nonce: The group calls itself “fail0verflow”:
bushing, marcan and sven, “Console hacking 2010: PS3 epic fail,” slides from lecture
presented at 27th Chaos Communication Congress, 2010, https://events.ccc.de
/congress/2010/Fahrplan/events/4087.en.html.

(Page 271) another hacker: The hacker who published the key is George Hotz, a.k.a.
“GeoHot.” Jonathan Fildes, “iPhone hacker publishes secret Sony PlayStation 3 key,”
BBC News Web site, 2011. http://www.bbc.co.uk/news/technology-12116051.

(Page 271) Sony’s lawsuit: David Kravets, “Sony settles PlayStation hacking lawsuit,”
Wired MagazineWeb site, http://www.wired.com/2011/04/sony-settles-ps3-lawsuit.
The legal documents may be found at Corynne McSherry, “Sony v. Hotz ends with a
whimper, I mean a gag order,” Electronic Frontier Foundation Deeplinks Blog, 2011,
https://www.eff.org/deeplinks/2011/04/sony-v-hotz-ends-whimper-i-mean-gag
-order. Hotz agreed not to share any more confidential information about Sony
products as well as to refrain from hacking them.

(Page 272) adaptive chosen-ciphertext attack: In the original version of ElGamal
encryption, if Eve has the ciphertext R and C and she can trick Bob into deciphering
(for example) R and 2C, then Bob’s result will be 2P, from which Eve can easily get P.
She does not get the private key, however.

https://www.ssllabs.com/ssltest/clients.html
https://events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
http://www.bbc.co.uk/news/technology-12116051
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https://www.eff.org/deeplinks/2011/04/sony-v-hotz-ends-whimper-i-mean-gag-order
https://events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
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(Page 272) DHIES and ECIES: DHIES and ECIES were first described in Mihir, Bellare
and Phillip Rogaway, “Minimizing the use of random oracles in authenticated
encryption schemes,” in Yongfei Han, Tatsuaki Okamoto, and Sihan Quing (eds.),
Proceedings of the First International Conference on Information and

Communication Security (Berlin/Heidelberg: Springer-Verlag, 1997) under the name
DLAES, although you have to read very closely to find the mention of elliptic
curves. The scheme has also been known as DHES and DHIES, and the modular
exponentiation discrete logarithm version is sometimes called DLIES. As it says
in Michel Abdalla et al., “The oracle Diffie-Hellman assumptions and an analysis of
DHIES,” in David Naccache (ed.), Topics in Cryptology-CT-RSA 2001

(Berlin/Heidelberg: Springer-Verlag, 2001): “It is all the same scheme.”
(Page 272) hyperelliptic curves: For more on hyperelliptic curves, see Hoffstein et al.,
Introduction to Mathematical Cryptography, Section 8.10.

(Page 273) pairing function: See Trappe and Washington, Introduction to

Cryptography, Section 16.6, for an overview of pairing functions, and Hoffstein et al.,
Introduction to Mathematical Cryptography, Sections 6.8–6.10, for the gory details.

(Page 273) tripartite Diffie-Hellman: See Hoffstein et al., Introduction to Mathematical

Cryptography, Sections 6.10.1 and the references there.
(Page 273) identity-based encryption: See Trappe and Washington, Introduction to

Cryptography, Section 16.6, or Hoffstein et al., Introduction to Mathematical

Cryptography, Section 6.10.2 for the details.
(Page 273) Suite B: NSA/CSS, “Cryptography Today,” NSA/CSS Web site,
https://www.nsa.gov/ia/programs/suitteb_cryptography/index.shtml. There
apparently is also a “Suite A” for “especially sensitive information”; the very
algorithms used are classified and not available to the public. NSA/CSS, “Fact sheet
NSA Suite B cryptography,” NSA/CSS Web site, http://wayback.archive.org/web
/20051125141648/http://www.nsa.gov/ia/industry/crypto_suite_b.cfm. The reader
may wish to consider this decision in light of Kerckhoffs’ principle.

(Page 273) original Suite B: NSA/CSS, “Fact Sheet NSA Suite B Cryptography”. The
second algorithm for key agreement, elliptic curve MQV, was removed from the suite
in 2008.

(Page 273) algorithm for helping create short signatures: That is, a hash function.
(Page 273) commercial and government standards: At the time, AES and the hash
function were the only two algorithms in their classes fully endorsed by NIST, unlike
the case for the key agreement and digital signature categories. AES is still the only
fully endorsed symmetric encryption algorithm, although another endorsed hash
function has been added.

(Page 273) NSA particularly mentioned: NSA/CSS, “The case for elliptic curve
cryptography,” NSA/CSS Web site, http://wayback.archive.org/web/
20131209051540/http://www.nsa.gov/business/programs/elliptic_curve.shtml.

(Page 274) Dual EC DRBG: Bruce Schneier, “Did NSA put a secret backdoor in new
encryption standard?”Wired MagazineWeb site, http://archive.wired.com
/politics/security/commentary/securitymatters/2007/11/securitymatters_1115.

(Page 274) two researchers from Microsoft: Dan Shumow and Niels Ferguson, “On
the possibility of a back door in the NIST SP800-90 Dual EC PRNG,” Slides from
presentation at Rump Session of CRYPTO 2007, http://rump2007.cr.yp.to/15

https://www.nsa.gov/ia/programs/suitteb_cryptography/index.shtml
http://wayback.archive.org/web/20051125141648/
http://www.nsa.gov/ia/industry/crypto_suite_b.cfm
http://wayback.archive.org/web/20131209051540/
http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://archive.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
http://rump2007.cr.yp.to/15-shumow.pdf
http://wayback.archive.org/web/20051125141648/
http://wayback.archive.org/web/20131209051540/
http://archive.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
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-shumow.pdf. Apparently the existence of such a back door was suspected as early
as 2005. Matthew Green, “A few more notes on NSA random number generators,” A
Few Thoughts on Cryptographic Engineering Blog, http://blog.cryptography
engineering.com/2013/12/a-few-more-notes-on-nsa-random-number.html.

(Page 274) Snowden documents on Dual EC DRBG: Nicole Perlroth, “Government
announces steps to restore confidence on encryption standards,” New York Times
Web site, http://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to
-restore-confidence-on-encryption-standards/.

(Page 274) NIST removed the system: “NIST removes cryptography algorithm from
random number generator recommendations,” NIST Tech Beat Blog,http://www
.nist.gov/itl/csd/sp800-90-042114.cfm.

(Page 275) “constants that the NSA influences”: Bruce Schneier, “NSA surveillance: A
guide to staying secure,” The Guardian (2013). In particular, if you do use elliptic
curves, this might be a reason to compute the curves and generators yourself instead
of looking them up in a table which might have been influenced by someone
malicious.

(Page 275) new set of algorithms: NSA/CSS, “Cryptography Today.”
(Page 275) NIST report on quantum-resistant cryptography: Lily Chen et al., Report
on Post-Quantum Cryptography, NIST, April 2016.

Chapter 9 The Future of Cryptography

(Page 276) Automatic food dispenser: Schrödinger originally phrased the question
somewhat differently, but I just can’t deal with discussing dead cats. Even
hypothetical ones. Sorry.

(Page 280) Deutch’s algorithm: The problem and the algorithm were first described
in D. Deutsch, “Quantum theory, the Church-Turing principle and the universal
quantum computer,” Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences 400:1818 (1985).

(Page 280) Shor’s algorithm: Shor’s algorithm was first published in P. W. Shor,
“Algorithms for quantum computation: Discrete logarithms and factoring,” in
Proceedings, 35th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Technical Committee on Mathematical Foundations of Computing
(Los Alamitos, CA: IEEE, 1994). A very nice nontechnical explanation of the ideas
involved is Scott Aaronson, “Shor, I’ll do it,” in Reed Cartwright and Bora Zivkovic
(eds.), The Open Laboratory: The Best Science Writing on Blogs 2007 (Lulu.com, 2008).

(Page 281) smallest number for Shor’s algorithm: Shor’s algorithm doesn’t work on
even numbers, which are easy to factor anyway, or numbers like 9, which are a
perfect power of a prime. Those can also be factored relatively quickly using special
techniques.

(Page 281) factorization of 15: Lieven M. K. Vandersypen et al., “Experimental
realization of Shor’s quantum factoring algorithm using nuclear magnetic
resonance,” Nature 414:6866 (2001).

(Page 281) factorization of 21: Enrique Martin-Lopez et al., “Experimental realisation
of Shor’s quantum factoring algorithm using qubit recycling,” Nature Photonics 6:11
(2012).
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(Page 281) factorization of 143: Nanyang Xu et al., “Quantum factorization of 143 on a
dipolar-coupling nuclear magnetic resonance system,” Physical Review Letters 108:13
(2012). It is not clear whether or not this algorithm, called adiabatic quantum
computation, is as fast as Shor’s algorithm.

(Page 281) factorization of 56153: Nikesh S. Dattani and Nathaniel Bryans, “Quantum
factorization of 56153 with only 4 qubits,” arXiv number 1411.6758, November 27,
2014. As the authors point out, in general “this reduction will not allow us to crack
big RSA codes [sic].”

(Page 281) Grover’s algorithm: Grover’s algorithm was first published in Lov K.
Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings

of the Twenty-eighth Annual ACM Symposium on Theory of Computing, Association
for Computing Machinery Special Interest Group on Algorithms and Computation
Theory (New York: ACM, 1996). Graham P Collins, “Exhaustive searching is less
tiring with a bit of quantum magic,” Physics Today 50:10 (1997), is a pretty readable
summary of the technique.

(Page 281) 256-bit AES keys: NSA/CSS, Cryptography Today.
(Page 281) postquantum cryptography: For a good, although somewhat technical,
overview of postquantum cryptography, see Daniel J. Bernstein, “Introduction to
post-quantum cryptography,” in Daniel J. Bernstein, Johannes Buchmann, and Erik
Dahmen (eds.), Post-Quantum Cryptography (Springer Berlin Heidelberg, 2009).

(Page 281) Not known to be easily solvable: Although, like most things in public-key
cryptography, they are not definitively known to be difficult either.

(Page 284) 500 dimensions or more: Hoffstein et al., Introduction to Mathematical

Cryptography, Section 7.11.2. Note that the number of dimensions of the lattice is 2N
for the values of N given in that section.

(Page 284) example cryptographic system: The first published cryptographic system
explicitly based on lattices appears to be the one invented byMiklós Ajtai and
Cynthia Dwork in 1997. (Miklós Ajtai and Cynthia Dwork, “A Public-key
cryptosystem with worst-case/average-case equivalence,” in Proceedings of the

Twenty-ninth Annual ACM Symposium on Theory of Computing, Association for
Computing Machinery Special Interest Group on Algorithms and Computation
Theory (New York; ACM, 1997).) The Ajtai-Dwork system was based on a variant of
the shortest vector problem and is currently considered to be secure but impractical.
The system I describe here was invented at about the same time and is currently
considered practical but insecure.

(Page 284) Babai’s algorithm: L Babai, “On Lovász’ lattice reduction and the nearest
lattice point problem,” Combinatorica 6:1 (1986).

(Page 287) both a “good” set and a “bad” set: I’m skipping over the details of how Bob
would find the generators. The short answer is that he finds a set of points with
angles close to right angles, makes that the good set, and uses it to calculate a bad
set. For more details, see the references for the GGH cryptosystem (page 291).

(Page 289) a very small amount of information:We will see that Eve can often
recover numbers somewhat near the original plaintext, even if she can’t recover the
actual plaintext. When there is less information in each number, it is harder for Eve
to guess the plaintext from the “somewhat near” information. Our example cipher
would be even more secure if we encoded each letter using binary bits and took each
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bit separately. Furthermore, we should really add in some extra random bits to avoid
frequency attacks. All this makes the messages very long, unfortunately. This effect
is called message expansion.

(Page 289) “lattice now”: See James Agee and Walker Evans, Let Us Now Praise Famous

Men (Boston: Houghton Mifflin, 1941).
(Page 289) almost certain: Unlike most cryptographic systems we have looked at, there
is a small chance that Bob’s decryption will not correctly match the original
message. If so, it probably will not make any sense so it is usually easy to tell. This is
similar to the situation with primality testing in Section 7.5. As long as the chance of
an accidental error is very small, the system is good enough.

(Page 291) GGH cryptosystem: Oded Goldreich et al., “Public-key cryptosystems
from lattice reduction problems,” in Burton S. Kaliski Jr. (ed.), Advances in
Cryptology—CRYPTO ’97 (Springer Berlin Heidelberg, 1997). Other sources for more
details of the system are Hoffstein et al., Introduction to Mathematical Cryptography,
Section 7.8 and Daniele Micciancio and Oded Regev, “Lattice-based cryptography,”
in Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen (eds.), Post-Quantum
Cryptography (Springer Berlin Heidelberg, 2009), Section 5.

(Page 292) GGH is insecure: Phong Nguyen, “Cryptanalysis of the Goldreich-
Goldwasser-Halevi cryptosystem from CRYPTO ’97,” in Michael Wiener (ed.),
Advances in Cryptology—CRYPTO ’99, (Springer Berlin Heidelberg, 1999).

(Page 292) other systems similar to GGH: See, for example, Micciancio and Regev,
“Lattice-based cryptography,” Section 5.

(Page 292) most promising: Ray A. Perlner and David A. Cooper, “Quantum resistant
public key cryptography: A survey,” in Kent Seamons, Neal McBurnett, and Tim
Polk, (eds.) Proceedings of the 8th Symposium on Identity and Trust on the Internet

(New York: ACM Press, 2009).
(Page 292) NTRU: NTRU was originally described in Jeffrey Hoffstein et al., “Public key
cryptosystem method and apparatus,” United States Patent: 6081597, 2000http://
www.google.com/patents/US6081597 and Jeffrey Hoffstein et al., “NTRU: A
ring-based public key cryptosystem,” in Joe P. Buhler (ed.), Algorithmic Number

Theory (Berlin/Heidelberg: Springer, 1998). For the lattice description and other
information, see Hoffstein et al., Introduction to Mathematical Cryptography, Section
17.10, Micciancio and Regev, “Lattice-based cryptography,” Section 5.2, or Trappe and
Washington, Introduction to Cryptography, Section 17.4.

(Page 292) rumors suggest: Trappe and Washington, Introduction to Cryptography,
Section 17.4.

(Page 292) Jeff Hoffstein replied: Personal communication, June 22, 1998. I was at a
conference at Reed College in a van with Carl Pomerance, headed toward the
conference banquet. Hoffstein was walking down the street when Pomerance yelled
the question at him out the window.

(Page 292) digital signature systems: GGH digital signatures, like GGH encryption,
have been shown to be insecure. (Phong Q. Nguyen, and Oded Regev, “Learning a
parallelepiped: Cryptanalysis of GGH and NTRU signatures,” Journal of Cryptology
22:2 (2008).) Early versions of NTRU digital signatures were also shown to be
insecure; the latest version was proposed in 2014 and has not been broken so far. The
inventors point out that it “will require years of scrutiny before it can be deemed

http://www.google.com/patents/US6081597
http://www.google.com/patents/US6081597
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secure.” (Hoffstein et al., Introduction to Mathematical Cryptography,
Section 17.12.5)

(Page 292)Wiesner’s ideas: See Levy, Crypto, pp. 332–38 for Wiesner’s story. The
paper was eventually published as Stephen Wiesner, “Conjugate coding,” SIGACT
News 15:1 (1983).

(Page 293) Bennett and Brassard: See Levy, Crypto, pp. 338–39, for Bennett’s
background and G. Brassard, “Brief history of quantum cryptography: A personal
perspective,” in IEEE Information Theory Workshop on Theory and Practice in

Information-Theoretic Security, 2005, Piscataway, NJ: IEEE Information Theory
Society in cooperation with the International Association for Cryptologic Research
(IACR) for Bennett and Brassard’s meeting.

(Page 293) BB84: C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” in Proceedings of the IEEE International Conference

on Computers, Systems, and Signal Processing, IEEE Computer Society, IEEE
Circuits and Systems Society, Indian Institute of Science (Bangalore, India, 1984).

(Page 293) as you look at it: Not that a human can generally see a single photon.
(Page 296) keep about half the bits: In this example, they did a little better.
(Page 297)What if Eve is listening?:We will see shortly that Eve actually has an extra
problem here, but let’s ignore it for the moment.

(Page 298) then Eve is listening: Or possibly it’s just noise on the line, but there are
ways that Alice and Bob can account for that, too. In some cases they can proceed
even if Eve has discovered some of the bits. Samuel J. Lomonaco Jr., “A talk on
quantum cryptography, or how Alice outwits Eve,” in David Joyner (ed.), Coding
Theory and Cryptography: From Enigma and Geheimschreiber to Quantum Theory

(Berlin/Heidelberg; New York: Springer, 2000), has a good introduction to BB84,
BB84 with noise on the line, and several other protocols. It also explains some of
the possibly strange-looking notation used in this subject, although it helps to
know some linear algebra. Samuel J. Lomonaco Jr., “A quick glance at quantum
cryptography,” Cryptologia 23:1 (1999), is an earlier version with somewhat more
depth and more references but less introductory material.

(Page 298) Needed to build a prototype: C. H. Bennett and G. Brassard, “The dawn of
a new era for quantum cryptography: The experimental prototype is working!” ACM
SIGACT News 20:4 (1989); Brassard, “Brief history.”

(Page 298) First-ever key agreement by quantum cryptography: Bennett and
Brassard, “Dawn of a new era”; C. H. Bennett et al., “Experimental quantum
cryptography,” Journal of Cryptology 5:1 (1992); Brassard, “Brief history.”

(Page 298) quantum key distribution over fiber optics: Boris Korzh et al., “Provably
secure and practical quantum key distribution over 307 km of optical fibre,” Nature
Photonics 9:3 (2015). This system used the “coherent one-way protocol” (COW)
instead of BB84. Nicolas Gisin et al., “Towards practical and fast quantum
cryptography,” arXiv number quant-ph/0411022, November 3, 2004. One of the
problems in transmitting quantum particles is that the communications channel
currently has to be a single link. Any attempt to boost or redirect the signal will
destroy the quantum characteristics that the system depends on, although
researchers are working on getting around that.
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(Page 299) BB84 through the open air: Tobias Schmitt-Manderbach et al.,
“Experimental demonstration of free-space decoy-state quantum key distribution
over 144 km,” Physical Review Letters 98:1 (2007).

(Page 299) First bank transfer protected by quantum cryptography: A. Poppe et al.,
“Practical quantum key distribution with polarization entangled photons,” Optics
Express 12:16 (2004). This system did not use BB84, but rather a somewhat related
protocol known as E91, which was first published in Artur K. Ekert, “Quantum
cryptography based on Bell’s theorem,” Physical Review Letters 67:6 (1991). For a
less technical description of E91, see Artur Ekert, “Cracking codes, part II,” Plus
Magazine No. 35 (2005).

(Page 299) Quantum-cryptographic equipment for sale: See, for example, Andrew
Shields and Zhiliang Yuan, “Key to the quantum industry,” Physics World 20:3 (2007).

(Page 299) Computer networks protected by quantum cryptography: United
States: Shields and Yuan, “Key to the quantum industry,” Richard J. Hughes et al.,
“Network-centric quantum communications with application to critical
infrastructure protection,” (May 1, 2013); Austria: Roland Pease, “‘Unbreakable’
encryption unveiled,” BBC News Web site, http://news.bbc.co.uk/2/hi/science
/nature/7661311.stm; Switzerland: D. Stucki et al., “Long-term performance of the
SwissQuantum quantum key distribution network in a field environment,”New
Journal of Physics 13:12 (2011); Japan: M. Sasaki et al., “Field test of quantum key
distribution in the Tokyo QKD Network,” Optics Express 19:11 (2011); China: Jian-Yu
Wang et al., “Direct and full-scale experimental verifications towards
ground-satellite quantum key distribution,” Nature Photonics 7:5 (2013).

(Page 299) “I don’t know . . . ”: Clay Dillow, “Unbreakable encryption comes to the
U.S.,” fortune.com, http://fortune.com/2013/10/14/unbreakable-encryption
-comes-to-the-u-s/, quoting Don Hayford of Battelle Memorial Institute.

(Page 299) pure cryptanalysis: These techniques are usually the most interesting
mathematically, which is the reason I have focused on them.

(Page 300) Photon number-splitting attack: This attack was named in Gilles Brassard
et al., “Limitations on practical quantum cryptography,” Physical Review Letters 85:6
(2000); it is described there as a modification of an earlier idea.

(Page 300) keep her captured photons: Note that she can’t use the storage trick in the
single-photon case, since she would have to both store the photon and send it on to
Bob.

(Page 301)Modifications to BB84: The most well-known of these is called SARG04; it
was first published in Valerio Scarani et al., “Quantum cryptography protocols
robust against photon number splitting attacks for weak laser pulse
implementations,” Physical Review Letters 92:5 (2004).

(Page 301) Decoy-pulse method:Won-Young Hwang, “Quantum key distribution with
high loss: Toward global secure communication,” Physical Review Letters 91:5 (2003).
Some of the links in the Japanese quantum network, among others, used this method
(Sasaki et al., “Field test of quantum key distribution”).

(Page 301) Bright illumination attack: Lars Lydersen et al., “Hacking commercial
quantum cryptography systems by tailored bright illumination,” Nature Photonics
4:10 (2010). Other active attacks include the time-shift attack, which takes
advantage of the possibility that some detectors might be more likely to fail to

http://news.bbc.co.uk/2/hi/science/nature/7661311.stm
http://fortune.com/2013/10/14/unbreakable-encryption-comes-to-the-u-s/
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register bits that are 1 as opposed to 0, or vice versa (Yi Zhao et al., “Quantum
hacking: Experimental demonstration of time-shift attack against practical
quantum-key-distribution systems,” Physical Review A 78:4 (2008)), and the
phase-remapping attack, which attacks systems in which Alice’s equipment can
receive photons as well as send them (Feihu Xu et al., “Experimental demonstration
of phase-remapping attack in a practical quantum key distribution system,” New
Journal of Physics 12:11 (2010)).

(Page 301) “It may be roundly asserted . . . ”: Edgar Allen Poe, “A few words on secret
writing,” Graham’s Magazine 19:1 (1841).
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SUGGESTIONS FOR FURTHER READING

As I said in the Preface, this book is about a particular aspect of cryptography, and there
are lots of other ways that you can study the subject. Here are some suggestions for how
to start; the detailed information about each source is in the bibliography.

If you would like to pursue an academic approach to cryptography, there are lots
of great textbooks out there. I can’t mention all of them here, but I’ll tell you a few of
my favorites. For something at about the same mathematical level as this book, I like
Invitation to Cryptology, by Thomas Barr. It’s a little out of date, but I’ve had good
luck using it with students and it has lots of great exercises. For something a little more
challenging, I use Introduction to Cryptography with Coding Theory, by Wade Trappe
and Lawrence Washington, in my courses for upper-level math and computer science
majors. It also has great exercises and covers some topics that this book hasn’t, such
as error-correcting codes. If you really want to push yourself mathematically, try An

Introduction to Mathematical Cryptography, by Jeffrey Hoffstein, Hill Pipher, and Joseph
Silverman. It’s written for advanced undergraduates and beginning graduate students
and focuses on public-key cryptography and digital signatures.

If you are interested in the practical side of actually using modern cryptography,
there are lots of good textbooks there, too. I’ve had good luck with Cryptography and

Network Security, by William Stallings. It covers cryptography and mathematics, with
a focus on what’s used in modern computers, and then goes on to talk about the specific
hardware and software that is used to keep those computers safe. Even if you don’t need
a textbook and are just curious about how your computer works with the cryptographic
systems we’ve discussed, I recommend it. But for a handbook of exactly what to do
and what not to do, you can’t beat Cryptography Engineering, by Niels Ferguson, Bruce
Schneier, and Tadayoshi Kohno. They describe the book as narrow and focused: “we
don’t give you dozens of choices; we give you one option and tell you how to implement
it correctly” (p. xxviii).

A less technical overview of the practical side is Secrets and Lies: Digital Security

in a Networked World, by Bruce Schneier. Schneier is both a noted cryptographer and
one of my favorite authors on cryptography, writing on everything from the techni-
cal aspects of ciphers to the practical to the social. I’ll point out a couple of his books
by name, but I recommend everything he’s written. Secrets and Lies is aimed at busi-
nesspeople who want to understand how digital security impacts their business, but it’s
extremely readable, and I recommend it to anyone who wants to understand practical
cryptography without wading through too much jargon.

If you want to be a professional cryptographer, that is, someone whose job it is
to invent and/or break the systems that keep secrets safe, you should read Applied



346 • Suggestions for Further Reading

Cryptography, by Bruce Schneier. Applied Cryptography is somewhat dated now, but
it covers the mathematical (and many other) details of every important modern cipher
known up to 1996. It was an invaluable reference while writing this book. Follow that
with Handbook of Applied Cryptography, by Alfred Menezes, Paul van Oorschot, and
Scott Vanstone, which has slightly different coverage and is slightly more up to date.
Then read The Design of Rijndael: AES—The Advanced Encryption Standard, by Joan
Daemen and Vincent Rijmen. As the winners of the AES competition, they arguably
know as much as anyone about how to design a cipher. Even better, they explain both
the details and the motivations behind the cipher in a surprisingly clear way for those
who can keep up with the math.

If you are interested in the history of cryptography, the must-read book is The
Codebreakers, by David Kahn. The first edition was published in 1967, and it’s the defini-
tive work on the history of cryptography as it stood up until that point. Two things have
happened since then, however. First, a lot of previously classified historical material
about cryptography has been released, particularly about cryptography in World War
II. Secondly, the use of cryptography in computers has exploded, leading to the devel-
opment of lots of new ciphers with interesting backgrounds. The second edition of The
Codebreakers, from 1996, has a short chapter on these developments, but you might
want more. There are lots of good books now on World War II cryptography; I’ve men-
tioned a few in the bibliography. I don’t have a particular favorite. For the development
of computer cryptography up until 2001, I like Crypto by Steven Levy. Unfortunately,
that book came out just before the announcement of the winner of the AES competi-
tion. In my opinion, the first really good history of cryptography at the beginning of the
twenty-first century has yet to be written. While we are waiting, I recommend the his-
torical vignettes in the later chapters of Secret History: The Story of Cryptology, by Craig
Bauer. Bauer’s book is a mixture of history and mathematics written by an expert in the
history of cryptography. It can be used as a textbook, a reference, or just something to
pick up and read a few entertaining pages at random.

One thing I haven’t said much about in this book is the social implications of cryp-
tography, particularly its role in the protection of personal privacy. A good introduction
to digital technology and privacy for nonexperts is Blown to Bits: Your Life, Liberty,

and Happiness After the Digital Explosion, by Hal Abelson, Ken Ledeen, and Harry
Lewis. This covers many aspects of modern privacy, including cryptography. Privacy
on the Line: The Politics of Wiretapping and Encryption, by Whitfield Diffie and Susan
Landau, focuses more specifically on communications technology and goes into much
more scholarly detail. Landau’s Surveillance or Security? The Risks Posed by New Wire-

tapping Technologies covers many of the same topics but brings them further up to date.
As I’m writing this, Bruce Schneier has just published Data and Goliath: The Hidden

Battles to Collect Your Data and Control Your World. I confess I haven’t read it yet, but
I’m really looking forward to it.

I’ve mentioned more than once that modern cryptography is a fast-moving field.
Unsurprisingly, cryptographers use the web heavily for both disseminating and obtain-
ing the latest news. Many of them write blogs, and I’ll mention a few of my favorites.
Bruce Schneier posts almost every day to Schneier on Security, https://www.schneier
.com. Like the rest of his writing, it ranges from cryptography to computer security to
wider issues of security and privacy. Many of the entries are short snippets of news

https://www.schneier.com
https://www.schneier.com
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articles, with links. When Schneier posts one of his own essays, it’s especially worth
reading.

Matthew Green posts about once a month to A Few Thoughts on Cryptographic

Engineering, http://blog.cryptographyengineering.com. Many of the posts are about
technical topics but written in a very readable way. They often start with a nontechnical
summary before attempting to explain the details. Matt Blaze wrote a similar blog un-
til 2013, Matt Blaze’s Exhaustive Search, http://www.crypto.com/blog. The blog doesn’t
seem to be currently active, but the page has archives and links, including Blaze’s Twitter
feed, which is active. Steve Bellovin posts about once a month to SMBlog: Pseudo-

Random Thoughts on Computers, Society, and Security, https://www.cs.columbia.edu
/∼smb/blog. I would describe these as technically informed opinion essays, often in-
spired by the latest news but not just reporting on it. Bellovin’s page also has links to
several other blogs that are less related to cryptography but that readers interested in
cryptography might find interesting.

I will also be maintaining a blog devoted to updating the material in this book with
new developments in cryptography and new historical discoveries. Many of these will
be pulled from the sources I’ve already mentioned, but I will also post recommendations
for new sources you might want to read. The blog will be accessible through the web
page for this book at http://press.princeton.edu/titles/10826.html.

Finally, if you really want to see the latest research in cryptography in all its tech-
nical glory, there are two main places on line where preprints of technical papers are
posted for free download. The more general one is arXiv, http://arxiv.org, which has
sections for physics (including quantum physics), mathematics, computer science, and a
few other fields. The Cryptology ePrint Archive, http://eprint.iacr.org/, is more restricted.

http://blog.cryptographyengineering.com
http://www.crypto.com/blog
https://www.cs.columbia.edu/~smb/blog
http://press.princeton.edu/titles/10826.html
http://arxiv.org
http://eprint.iacr.org/
https://www.cs.columbia.edu/~smb/blog
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